Force feedback linearization for higher-order electromechanical sigma-delta modulators

Abstract A higher-order electromechanical sigma–delta modulator can greatly improve the signal-to-noise ratio compared with a second-order loop that only uses the sensing element as a loop filter. However, the electrostatic force feedback on the proof mass is inherently nonlinear, which will produce harmonics in the output spectrum and limits the total signal-to-noise and distortion ratio. High performance inertial sensors, which use sigma–delta modulators as a closed-loop control system, have strict requirements on the output signal distortion. In this paper, nonlinear effects from the force feedback and pick-off circuits are analysed and a strategy for force feedback linearization is put forward which can considerably improve the signal-to-noise and distortion ratio. A PCB prototype of a fifth-order electromechanical modulator with a bulk micromachined accelerometer was used to demonstrate the concept.

[1]  Franco Maloberti,et al.  Improved modeling of sigma-delta modulator non-idealities in Simulink , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[2]  Michael Kraft,et al.  A high-performance accelerometer with a fifth-order sigma–delta modulator , 2005 .

[3]  Wouter Olthuis,et al.  A sensitive differential capacitance to voltage converter for sensor applications , 1999, IEEE Trans. Instrum. Meas..

[4]  Lucien Breems,et al.  Continuous-Time Sigma-Delta Modulation for IF A/D Conversion in Radio Receivers , 2001 .

[5]  E. Sanchez-Sinencio,et al.  A continuous-time sigma-delta modulator with 88-dB dynamic range and 1.1-MHz signal bandwidth , 2004, IEEE Journal of Solid-State Circuits.

[6]  E. Sánchez-Sinencio,et al.  A Continuous-Time Modulator With 88-dB Dynamic Range and 1 . 1-MHz Signal Bandwidth , 2001 .

[7]  Michael Kraft,et al.  Noise analysis for high order electromechanical sigma-delta modulators , 2005 .

[8]  Richard Schreier,et al.  An empirical study of high-order single-bit delta-sigma modulators , 1993 .

[9]  Bernhard E. Boser,et al.  17.6 A Fourth-Order Σ∆ Interface for Micromachined Inertial Sensors , 2004 .

[10]  Bernhard E. Boser,et al.  A three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics , 1999, IEEE J. Solid State Circuits.

[11]  Farrokh Ayazi,et al.  Micromachined inertial sensors , 1998, Proc. IEEE.

[12]  K. Najafi,et al.  An in-plane high-sensitivity, low-noise micro-g silicon accelerometer with CMOS readout circuitry , 2004 .

[13]  Francis E. H. Tay,et al.  A differential capacitive low-g microaccelerometer with mg resolution , 2000 .

[14]  F. Ayazi,et al.  A 2.5-V 14-bit /spl Sigma//spl Delta/ CMOS SOI capacitive accelerometer , 2004, IEEE Journal of Solid-State Circuits.

[15]  B.E. Boser,et al.  A fourth-order /spl Sigma//spl Delta/ interface for micromachined inertial sensors , 2004, IEEE Journal of Solid-State Circuits.