On investigating GMRES convergence using unitary matrices

For a given matrix A and right-hand side b, this paper investigates unitary matrices generating, with some right-hand sides c, the same GMRES residual norms as the pair (A,b). We give characterizations of this class of unitary matrices and point out the relationship with Krylov subspaces and Krylov residual subspaces for the pair (A,b). We investigate the eigenvalues of these unitary matrices in relation to the convergence behavior of GMRES for the pair (A,b) and describe the indispensable role of the eigenvector information. We conclude with a formula for the GMRES residual norms generated by a normal matrix B in terms of its eigenvalues and components of the right-hand side c in the eigenvector basis.

[1]  G. Stewart Collinearity and Least Squares Regression , 1987 .

[2]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[3]  William B. Gragg,et al.  Constructing a Unitary Hessenberg Matrix from Spectral Data , 1991 .

[4]  Jörg Liesen,et al.  Computable Convergence Bounds for GMRES , 2000, SIAM J. Matrix Anal. Appl..

[5]  Walter Gautschi,et al.  On inverses of Vandermonde and confluent Vandermonde matrices , 1962 .

[6]  Walter Gautschi,et al.  On inverses of Vandermonde and confluent Vandermonde matrices. II , 1963 .

[7]  Ilse C. F. Ipsen Expressions and Bounds for the GMRES Residual , 2000, Bit Numerical Mathematics.

[8]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[9]  B. Parlett Normal Hessenberg and moment matrices , 1973 .

[10]  Barry Simon,et al.  Orthogonal Polynomials on the Unit Circle , 2004, Encyclopedia of Special Functions: The Askey-Bateman Project.

[11]  J. Liesen,et al.  Least Squares Residuals and Minimal Residual Methods , 2001, SIAM J. Sci. Comput..

[12]  Barry Simon,et al.  Orthogonal polynomials on the unit circle. Part 1 , 2005 .

[13]  Jörg Liesen,et al.  Construction and analysis of polynomial iterative methods for non-hermitian systems of linear equations , 1998 .

[14]  Khalide Jbilou,et al.  New convergence results on the global GMRES method for diagonalizable matrices , 2008 .

[15]  M. Arioli,et al.  Krylov sequences of maximal length and convergence of GMRES , 1997 .

[16]  Ilse C. F. Ipsen,et al.  GMRES and the minimal polynomial , 1996 .

[17]  Leonid Knizhnerman On GMRES-Equivalent Bounded Operators , 2000, SIAM J. Matrix Anal. Appl..

[18]  G. Szegő Zeros of orthogonal polynomials , 1939 .

[19]  Gérard Meurant,et al.  Any Ritz Value Behavior Is Possible for Arnoldi and for GMRES , 2012, SIAM J. Matrix Anal. Appl..

[20]  A. Greenbaum,et al.  Matrices That Generate the Same Krylov Residual Spaces , 2015 .

[21]  Tai-Lin Wang,et al.  Convergence of the shifted QR algorithm for unitary Hessenberg matrices , 2002, Math. Comput..

[22]  Z. Strakos,et al.  Krylov Subspace Methods: Principles and Analysis , 2012 .

[23]  Beresford N. Parlett,et al.  Canonical decomposition of Hessenberg matrices , 1967 .

[24]  Anne Greenbaum,et al.  Any Nonincreasing Convergence Curve is Possible for GMRES , 1996, SIAM J. Matrix Anal. Appl..

[25]  Marc Van Barel,et al.  Convergence of the Isometric Arnoldi Process , 2005, SIAM J. Matrix Anal. Appl..

[26]  J. Zítko,et al.  Generalization of convergence conditions for a restarted GMRES , 2000, Numer. Linear Algebra Appl..

[27]  A. Greenbaum Comparison of splittings used with the conjugate gradient algorithm , 1979 .

[28]  Homer F. Walker,et al.  A simpler GMRES , 1994, Numer. Linear Algebra Appl..

[29]  Gregory S. Ammar,et al.  ON AN INVERSE EIGENVALUE PROBLEM FOR UNITARY HESSENBERG MATRICES , 1995 .

[30]  William B. Gragg,et al.  The QR algorithm for unitary Hessenberg matrices , 1986 .

[31]  Angelika Bunse-Gerstner,et al.  Schur parameter pencils for the solution of the unitary eigenproblem , 1991 .

[32]  GMRES and the Arioli, Pták, and Strakoš parametrization , 2012 .

[33]  Jan Zítko Generalization of convergence conditions for a restarted GMRES , 2000, Numer. Linear Algebra Appl..

[34]  Hassane Sadok,et al.  Analysis of the convergence of the minimal and the orthogonal residual methods , 2005, Numerical Algorithms.

[35]  Heike Faßbender,et al.  Inverse unitary eigenproblems and related orthogonal functions , 1997 .

[36]  Gene H. Golub,et al.  Numerical Linear Algebra, Digital Signal Processing and Parallel Algorithms , 1991, NATO ASI Series.

[37]  Zdenek Strakos,et al.  Krylov Subspace Methods , 2012 .

[38]  Dianne P. O'Leary,et al.  Complete stagnation of gmres , 2003 .

[39]  Lloyd N. Trefethen,et al.  GMRES/CR and Arnoldi/Lanczos as Matrix Approximation Problems , 2018, SIAM J. Sci. Comput..

[40]  Jörg Liesen,et al.  The Worst-Case GMRES for Normal Matrices , 2004 .

[41]  Axel Ruhe Rational Krylov sequence methods for eigenvalue computation , 1984 .