On investigating GMRES convergence using unitary matrices
暂无分享,去创建一个
Gérard Meurant | Zdeněk Strakoš | H. Sadok | G. Meurant | H. Sadok | J. D. Tebbens | J. Duintjer Tebbens | Z. Strakoš
[1] G. Stewart. Collinearity and Least Squares Regression , 1987 .
[2] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[3] William B. Gragg,et al. Constructing a Unitary Hessenberg Matrix from Spectral Data , 1991 .
[4] Jörg Liesen,et al. Computable Convergence Bounds for GMRES , 2000, SIAM J. Matrix Anal. Appl..
[5] Walter Gautschi,et al. On inverses of Vandermonde and confluent Vandermonde matrices , 1962 .
[6] Walter Gautschi,et al. On inverses of Vandermonde and confluent Vandermonde matrices. II , 1963 .
[7] Ilse C. F. Ipsen. Expressions and Bounds for the GMRES Residual , 2000, Bit Numerical Mathematics.
[8] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[9] B. Parlett. Normal Hessenberg and moment matrices , 1973 .
[10] Barry Simon,et al. Orthogonal Polynomials on the Unit Circle , 2004, Encyclopedia of Special Functions: The Askey-Bateman Project.
[11] J. Liesen,et al. Least Squares Residuals and Minimal Residual Methods , 2001, SIAM J. Sci. Comput..
[12] Barry Simon,et al. Orthogonal polynomials on the unit circle. Part 1 , 2005 .
[13] Jörg Liesen,et al. Construction and analysis of polynomial iterative methods for non-hermitian systems of linear equations , 1998 .
[14] Khalide Jbilou,et al. New convergence results on the global GMRES method for diagonalizable matrices , 2008 .
[15] M. Arioli,et al. Krylov sequences of maximal length and convergence of GMRES , 1997 .
[16] Ilse C. F. Ipsen,et al. GMRES and the minimal polynomial , 1996 .
[17] Leonid Knizhnerman. On GMRES-Equivalent Bounded Operators , 2000, SIAM J. Matrix Anal. Appl..
[18] G. Szegő. Zeros of orthogonal polynomials , 1939 .
[19] Gérard Meurant,et al. Any Ritz Value Behavior Is Possible for Arnoldi and for GMRES , 2012, SIAM J. Matrix Anal. Appl..
[20] A. Greenbaum,et al. Matrices That Generate the Same Krylov Residual Spaces , 2015 .
[21] Tai-Lin Wang,et al. Convergence of the shifted QR algorithm for unitary Hessenberg matrices , 2002, Math. Comput..
[22] Z. Strakos,et al. Krylov Subspace Methods: Principles and Analysis , 2012 .
[23] Beresford N. Parlett,et al. Canonical decomposition of Hessenberg matrices , 1967 .
[24] Anne Greenbaum,et al. Any Nonincreasing Convergence Curve is Possible for GMRES , 1996, SIAM J. Matrix Anal. Appl..
[25] Marc Van Barel,et al. Convergence of the Isometric Arnoldi Process , 2005, SIAM J. Matrix Anal. Appl..
[26] J. Zítko,et al. Generalization of convergence conditions for a restarted GMRES , 2000, Numer. Linear Algebra Appl..
[27] A. Greenbaum. Comparison of splittings used with the conjugate gradient algorithm , 1979 .
[28] Homer F. Walker,et al. A simpler GMRES , 1994, Numer. Linear Algebra Appl..
[29] Gregory S. Ammar,et al. ON AN INVERSE EIGENVALUE PROBLEM FOR UNITARY HESSENBERG MATRICES , 1995 .
[30] William B. Gragg,et al. The QR algorithm for unitary Hessenberg matrices , 1986 .
[31] Angelika Bunse-Gerstner,et al. Schur parameter pencils for the solution of the unitary eigenproblem , 1991 .
[32] GMRES and the Arioli, Pták, and Strakoš parametrization , 2012 .
[33] Jan Zítko. Generalization of convergence conditions for a restarted GMRES , 2000, Numer. Linear Algebra Appl..
[34] Hassane Sadok,et al. Analysis of the convergence of the minimal and the orthogonal residual methods , 2005, Numerical Algorithms.
[35] Heike Faßbender,et al. Inverse unitary eigenproblems and related orthogonal functions , 1997 .
[36] Gene H. Golub,et al. Numerical Linear Algebra, Digital Signal Processing and Parallel Algorithms , 1991, NATO ASI Series.
[37] Zdenek Strakos,et al. Krylov Subspace Methods , 2012 .
[38] Dianne P. O'Leary,et al. Complete stagnation of gmres , 2003 .
[39] Lloyd N. Trefethen,et al. GMRES/CR and Arnoldi/Lanczos as Matrix Approximation Problems , 2018, SIAM J. Sci. Comput..
[40] Jörg Liesen,et al. The Worst-Case GMRES for Normal Matrices , 2004 .
[41] Axel Ruhe. Rational Krylov sequence methods for eigenvalue computation , 1984 .