Reconfigurable Interaction for MAS Modelling

We propose a formalism to model and reason about multi-agent systems. We allow agents to interact and communicate in different modes so that they can pursue joint tasks; agents may dynamically synchronize, exchange data, adapt their behaviour, and reconfigure their communication interfaces. The formalism defines a local behaviour based on shared variables and a global one based on message passing. We extend LTL to be able to reason explicitly about the intentions of the different agents and their interaction protocols. We also study the complexity of satisfiability and model-checking of this extension.

[1]  Michael Wooldridge,et al.  From model checking to equilibrium checking: Reactive modules for rational verification , 2016, Artif. Intell..

[2]  Dejan Nickovic,et al.  Dynamic Reactive Modules , 2011, CONCUR.

[3]  Rocco De Nicola,et al.  A calculus for collective-adaptive systems and its behavioural theory , 2019, Inf. Comput..

[4]  Nancy A. Lynch,et al.  Dynamic input/output automata: A formal and compositional model for dynamic systems , 2016, Inf. Comput..

[5]  Robin Milner,et al.  A Calculus of Mobile Processes, II , 1992, Inf. Comput..

[6]  ROBIN MILNER,et al.  Edinburgh Research Explorer A Calculus of Mobile Processes, I , 2003 .

[7]  Alessio Lomuscio,et al.  Formal Verification of Open Multi-Agent Systems , 2019, AAMAS.

[8]  Joseph Y. Halpern,et al.  The Complexity of Reasoning about Knowledge and Time. I. Lower Bounds , 1989, J. Comput. Syst. Sci..

[9]  Marcos K. Aguilera,et al.  The Impact of RDMA on Agreement , 2019, PODC.

[10]  Eliseo Ferrante,et al.  Establishing spatially targeted communication in a heterogeneous robot swarm , 2010, AAMAS.

[11]  Ioana Boureanu,et al.  Verifying Strategic Abilities in Multi-agent Systems with Private Data-Sharing , 2019, AAMAS.

[12]  Satoru Miyano,et al.  Alternating Finite Automata on omega-Words , 1984, CAAP.

[13]  Joseph Y. Halpern,et al.  The complexity of reasoning about knowledge and time , 1986, STOC '86.

[14]  Aniello Murano,et al.  Reasoning About Strategies: On the Model-Checking Problem , 2011, ArXiv.

[15]  Thomas A. Henzinger,et al.  Reactive Modules , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[16]  Aniello Murano,et al.  Strategy logic with imperfect information , 2017, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[17]  Marcos K. Aguilera,et al.  Passing Messages while Sharing Memory , 2018, PODC.

[18]  Cristovao Silva,et al.  The layout design in reconfigurable manufacturing systems: a literature review , 2019, The International Journal of Advanced Manufacturing Technology.

[19]  Krishnendu Chatterjee,et al.  Strategy logic , 2007, Inf. Comput..

[20]  Dexter Kozen,et al.  RESULTS ON THE PROPOSITIONAL’p-CALCULUS , 2001 .

[21]  Cheng Wang,et al.  APUS: fast and scalable paxos on RDMA , 2017, SoCC.

[22]  Hadas Kress-Gazit,et al.  Need-based coordination for decentralized high-level robot control , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[23]  Michael Wooldridge,et al.  An introduction to multiagent systems Wiley , 2002 .

[24]  M. Wooldridge,et al.  Imperfect Information in Reactive Modules Games , 2016, KR.

[25]  Heiko Hamann,et al.  Swarm Robotics - A Formal Approach , 2018 .

[26]  Hagit Attiya,et al.  Sharing memory robustly in message-passing systems , 1990, PODC '90.

[27]  Bernd Finkbeiner,et al.  Uniform distributed synthesis , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[28]  Alessio Lomuscio,et al.  Verification of Multi-agent Systems with Imperfect Information and Public Actions , 2017, AAMAS.

[29]  Marco Dorigo,et al.  The Swarm-bots and swarmanoid experiments in swarm robotics , 2014, ICARSC.

[30]  Jan Oliver Ringert,et al.  GR(1) synthesis for LTL specification patterns , 2015, ESEC/SIGSOFT FSE.

[31]  Thomas A. Henzinger,et al.  Alternating-time temporal logic , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[32]  Sotiris Makris,et al.  Reconfigurable Assembly Station: A Consumer Goods Industry Paradigm , 2019, Procedia CIRP.

[33]  Alessio Lomuscio,et al.  Model Checking Distributed Systems against Temporal-Epistemic Specifications , 2013, FMOODS/FORTE.

[34]  Aaron Helsinger,et al.  Cougaar: a scalable, distributed multi-agent architecture , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[35]  George S. Avrunin,et al.  Patterns in property specifications for finite-state verification , 1999, Proceedings of the 1999 International Conference on Software Engineering (IEEE Cat. No.99CB37002).

[36]  Ronald Fagin,et al.  Reasoning about knowledge , 1995 .

[37]  Barbara Messing,et al.  An Introduction to MultiAgent Systems , 2002, Künstliche Intell..

[38]  Thomas A. Henzinger,et al.  MOCHA: Modularity in Model Checking , 1998, CAV.

[39]  Radhika Nagpal,et al.  Kilobot: A low cost robot with scalable operations designed for collective behaviors , 2014, Robotics Auton. Syst..

[40]  Richard E. Ladner,et al.  Propositional Dynamic Logic of Regular Programs , 1979, J. Comput. Syst. Sci..

[41]  Adrian Schüpbach,et al.  The multikernel: a new OS architecture for scalable multicore systems , 2009, SOSP '09.