From interstellar abundances to grain composition: the major dust constituents Mg, Si, and Fe

We analyse observational correlations for three elements entering into the composition of interstellar silicate and oxide grains. Using current solar abundances, we converted the gas phase abundances into dust phase abundances for 196 sightlines. We deduce a sharp difference in abundances for sightlines located at low (|b| 30 ◦ ) galactic latitudes. For high-latitude stars, the ratios Mg/Si and Fe/Si in dust are close to 1.5. For disk stars they are reduced to Mg/Si ∼ 1. 2a nd Fe/Si ∼ 1.05. The derived numbers indicate that 1) the dust grains cannot be the mixture of silicates with olivine and pyroxene composition only, and some amount of magnesium or iron (or both) should be in another population and that 2) the destruction of Mg-rich grains in the warm medium is more effective than for Fe-rich grains. We reveal a decrease in dust phase abundances and correspondingly an increase in gas phase abundances with distance D for stars with D > 400 pc. We attribute this to an observational selection effect: a systematic trend toward lower observed hydrogen column density for distant stars. We find differences in abundances for disk stars with low (E(B −V) 0.2) reddenings that reflect the distinction between the sightlines passing through diffuse and translucent interstellar clouds. For Scorpius-Ophiuchus, we detect a uniform increase in dust phase abundances of Mg and Si with an increase in the ratio of total to selective extinction RV and a decrease in the strength of the far-UV extinction. This is the first evidence of growth of Mg-Si grains due to accretion in the interstellar medium.

[1]  D. Whittet,et al.  Dust in the Galactic Environment , 2018 .

[2]  V. Il’in,et al.  Interstellar extinction and polarization - a spheroidal dust grain approach perspective , 2010, Monthly Notices of the Royal Astronomical Society.

[3]  D. Whittet,et al.  OXYGEN DEPLETION IN THE INTERSTELLAR MEDIUM: IMPLICATIONS FOR GRAIN MODELS AND THE DISTRIBUTION OF ELEMENTAL OXYGEN , 2009, 0912.3298.

[4]  K. Gordon,et al.  FAR-ULTRAVIOLET DUST ALBEDO MEASUREMENTS IN THE UPPER SCORPIUS CLOUD USING THE SPINR SOUNDING ROCKET EXPERIMENT , 2009, 0910.2484.

[5]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[6]  P. François,et al.  On the metallicity gradient of the Galactic disk , 2009, 0906.3140.

[7]  Edward B. Jenkins,et al.  A UNIFIED REPRESENTATION OF GAS-PHASE ELEMENT DEPLETIONS IN THE INTERSTELLAR MEDIUM , 2009, 0905.3173.

[8]  H. Gail,et al.  Abundances of the elements in the solar system , 2009, 0901.1149.

[9]  M. F. A. Garching,et al.  A Cosmic Abundance Standard: Chemical Homogeneity of the Solar Neighborhood and the ISM Dust-Phase Composition , 2008, 0809.2403.

[10]  G. Clayton,et al.  Interstellar Krypton Abundances: The Detection of Kiloparsec-scale Differences in Galactic Nucleosynthetic History , 2008, 0808.0886.

[11]  T. Snow,et al.  A Study of the ρ Ophiuchi Cloud: Mapping the Distribution and the Motions of Interstellar Gas , 2008 .

[12]  N. Voshchinnikov,et al.  Modelling interstellar extinction and polarization with spheroidal grains , 2008, Journal of Quantitative Spectroscopy and Radiative Transfer.

[13]  D. York,et al.  The Far Ultraviolet Spectroscopic Explorer Survey of O VI Absorption in the Disk of the Milky Way , 2007, 0711.0005.

[14]  A. Jensen,et al.  The Variation of Magnesium Depletion with Line-of-Sight Conditions , 2007, 0710.1064.

[15]  T. Snow,et al.  New Insights on Interstellar Gas-Phase Iron , 2007, 0710.1062.

[16]  M. Trieloff,et al.  Evolution of interstellar dust and stardust in the solar neighbourhood , 2007, 0706.1155.

[17]  D. Massa,et al.  An Analysis of the Shapes of Interstellar Extinction Curves. V. The IR-through-UV Curve Morphology , 2007, 0705.0154.

[18]  J. Lauroesch,et al.  Interstellar Iron and Silicon Depletions in Translucent Sight Lines , 2007, astro-ph/0701408.

[19]  Benjamin J. McCall,et al.  Diffuse Atomic and Molecular Clouds , 2006 .

[20]  J. Lauroesch,et al.  The Homogeneity of Interstellar Elemental Abundances in the Galactic Disk , 2005, astro-ph/0512312.

[21]  T. Henning,et al.  Dust extinction and absorption: the challenge of porous grains , 2005, astro-ph/0509277.

[22]  K. Gordon,et al.  Ultraviolet Extinction Properties in the Milky Way , 2004, astro-ph/0408409.

[23]  J. Lauroesch,et al.  Interstellar Carbon in Translucent Sight Lines , 2004, astro-ph/0401510.

[24]  Richard G. Arendt,et al.  Interstellar Dust Models Consistent with Extinction, Emission, and Abundance Constraints , 2003, astro-ph/0312641.

[25]  T. Snow,et al.  Abundances and Depletions of Interstellar Oxygen , 2003, astro-ph/0410602.

[26]  L. Morbidelli,et al.  A study of R$_\textit{\textbf{\fontsize{13pt}{15pt}\selectfont V}}$ in Galactic O stars from the 2MASS catalogue , 2003 .

[27]  J. Lauroesch,et al.  The Homogeneity of Interstellar Oxygen in the Galactic Disk , 2003, astro-ph/0406385.

[28]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[29]  T. Snow,et al.  Gas-Phase Iron Abundances and Depletions in Translucent Interstellar Lines of Sight from Far Ultraviolet Spectroscopic Explorer Observations of Fe II Lines , 2002 .

[30]  A. Jones Depletion patterns and dust evolution in the interstellar medium , 1999, astro-ph/9907066.

[31]  B. Savage,et al.  Abundances and Physical Conditions in the Warm Neutral Medium toward μ Columbae , 1999, astro-ph/9905187.

[32]  H. Winkler Red and infrared colours of B stars and the reddening law in the Galaxy , 1997 .

[33]  J. Mathis Dust Models with Tight Abundance Constraints , 1996 .

[34]  A. Witt,et al.  Interstellar Depletions Updated: Where All the Atoms Went , 1996 .

[35]  Kenneth R. Sembach,et al.  INTERSTELLAR ABUNDANCES FROM ABSORPTION-LINE OBSERVATIONS WITH THE HUBBLE SPACE TELESCOPE , 1996 .

[36]  C. Ryter Interstellar extinction from infrared to X-rays: An overview , 1996 .

[37]  B. Savage,et al.  Abundances of interstellar atoms from ultaviolet absorption lines , 1986 .

[38]  L. Spitzer Average density along interstellar lines of sight , 1985 .

[39]  A. Harris,et al.  The correlation of interstellar element depletions with mean gas density , 1984 .

[40]  S. Prasad,et al.  Dependence of interstellar depletion on hydrogen column density: Possibilities and implications , 1983 .

[41]  R. G. Tabak Interstellar depletion anomalies and ionization potentials , 1979 .

[42]  B. Savage,et al.  The depletion of interstellar gaseous iron , 1979 .

[43]  G. Field Interstellar abundances - Gas and dust , 1974 .

[44]  T. Snow H$sup -$ as a source of diffuse interstellar bands , 1973 .

[45]  K. Lodders,et al.  Landolt-Börnstein, New Series, Astronomy and Astrophysics, Springer Verlag, Berlin, 2009 , 2009 .

[46]  W. Wegner Atlas of Interstellar Extinction Curves of OB Stars Covering the Whole Available Wavelength Range , 2002 .

[47]  Michel Casse,et al.  Origin and evolution of the elements , 1993 .

[48]  V. Straĭzhis,et al.  Multicolor stellar photometry , 1992 .

[49]  Edward L. Fitzpatrick,et al.  An Analysis of the Shapes of Ultraviolet Extinction Curves. III. an Atlas of Ultraviolet Extinction Curves , 1990 .

[50]  S. Federman,et al.  The effect of a weak shock on interstellar gas toward the Rho Ophiuchi cloud , 1985 .

[51]  Edward B. Jenkins,et al.  Ultraviolet studies of the interstellar gas , 1975 .