Extended Variational Formulation for Heterogeneous Partial Differential Equations

Abstract We address the coupling of an advection equation with a diffusion-advection equation, for solutions featuring boundary layers. We consider non-overlapping domain decompositions and we face up the heterogeneous problem using an extended variational formulation. We will prove the equivalence between the latter formulation and a treatment based on a singular perturbation theory. An exhaustive comparison in terms of solution and computational efficiency between these formulations is carried out.

[1]  Sigal Gottlieb,et al.  Spectral Methods , 2019, Numerical Methods for Diffusion Phenomena in Building Physics.

[2]  Martin J. Gander,et al.  Viscous Problems with Inviscid Approximations in Subregions: a New Approach Based on Operator Factorization , 2009 .

[3]  Faker Ben Belgacem,et al.  The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.

[4]  Claudio Canuto,et al.  Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (Scientific Computation) , 2007 .

[5]  Pablo J. Blanco,et al.  A variational approach for coupling kinematically incompatible structural models , 2008 .

[6]  Alfio Quarteroni,et al.  Numerical Approximation of Internal Discontinuity Interface Problems , 2013, SIAM J. Sci. Comput..

[7]  P. Blanco,et al.  A unified variational approach for coupling 3D-1D models and its blood flow applications , 2007 .

[8]  Jean-Luc Guermond,et al.  Discontinuous Galerkin Methods for Anisotropic Semidefinite Diffusion with Advection , 2008, SIAM J. Numer. Anal..

[9]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[10]  Eric Dubach Contribution à la résolution des équations fluides en domaine non borné , 1993 .

[11]  A. Quarteroni,et al.  Non-conforming high order approximations of the elastodynamics equation , 2012 .

[12]  Igor Boglaev The Solution of a Singularly Perturbed Convection–Diffusion Problem by an Iterative Domain Decomposition Method , 2004, Numerical Algorithms.

[13]  Luca Formaggia,et al.  Sten a rilascio di farmaco: una storia di successo per la matematica applicata , 2010 .

[14]  Paul Houston,et al.  Preconditioning High-Order Discontinuous Galerkin Discretizations of Elliptic Problems , 2013, Domain Decomposition Methods in Science and Engineering XX.

[15]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[16]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[17]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[18]  Alfio Quarteroni,et al.  On the coupling of hyperbolic and parabolic systems: analytical and numerical approach , 1988 .

[19]  Ricardo G. Durán,et al.  Mixed Finite Element Methods , 2008 .

[20]  P. Gács,et al.  Algorithms , 1992 .

[21]  Gianluigi Rozza,et al.  Numerical Simulation of Sailing Boats: Dynamics, FSI, and Shape Optimization , 2012 .

[22]  Martin J. Gander,et al.  Optimized Schwarz Algorithms for Coupling Convection and Convection-Diffusion Problems , 2001 .

[23]  Anthony T. Patera,et al.  Domain Decomposition by the Mortar Element Method , 1993 .

[24]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[25]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[26]  Luca Antiga,et al.  An Integrated Statistical Investigation of the Internal Carotid Arteries hosting Cerebral Aneurysms , 2011 .

[27]  Raffaele Argiento,et al.  A semiparametric Bayesian generalized linear mixed model for the reliability of Kevlar fibers , 2012 .

[28]  Marc Garbey,et al.  Asymptotic and numerical methods for partial differential equations with critical parameters , 1993 .

[29]  Wolfgang L. Wendland,et al.  The coupling of hyperbolic and elliptic boundary value problems with variable coefficients , 2000 .

[30]  Gianluigi Rozza,et al.  Certified reduced basis approximation for parametrized partial differential equations and applications , 2011 .

[31]  Martin J. Gander,et al.  Advection Diffusion Problems with Pure Advection Approximation in Subregions , 2007 .

[32]  Luca Mesin,et al.  Spiral waves on a contractile tissue , 2011 .

[33]  Frédéric Nataf,et al.  PARABOLIC APPROXIMATIONS OF THE CONVECTION-DIFFUSION EQUATION , 1993 .

[34]  G. Tallini,et al.  ON THE EXISTENCE OF , 1996 .