Plane Slider Bearing Load Due to Fluid Inertia—Experiment and Theory

Experimental measurements of load in a simulated plane slider bearing have been performed. The flow is laminar but modified Reynolds numbers up to 30 are obtained. In comparison with actual bearings, large film thickness and slow velocity are used to avoid experimental difficulties and isolate the inertia effect. The load is found to have increased by 100 percent relative to lubrication theory at modified Reynolds number about ten. Most existing inertia theories predict only a small effect at this Reynolds number. A simple theory is proposed to account for this discrepancy, combining existing models which have considered an inlet pressure jump and small Reynolds number perturbation analysis.