Symmetry-Free, p-Robust Equilibrated Error Indication for the hp-Version of the FEM in Nearly Incompressible Linear Elasticity
暂无分享,去创建一个
[1] M. Ainsworth,et al. Guaranteed computable error bounds for conforming and nonconforming finite element analyses in planar elasticity , 2010 .
[2] L. Demkowicz,et al. Analysis of the equilibrated residual method for a posteriori error estimation on meshes with hanging nodes , 2007 .
[3] Marta Lewicka,et al. The uniform Korn–Poincaré inequality in thin domains , 2008, 0803.0355.
[4] Kwang-Yeon Kim. A POSTERIORI ERROR ESTIMATOR FOR LINEAR ELASTICITY BASED ON NONSYMMETRIC STRESS TENSOR APPROXIMATION , 2012 .
[5] Douglas N. Arnold,et al. Mixed finite elements for elasticity , 2002, Numerische Mathematik.
[6] Pierre Ladevèze,et al. Error Estimate Procedure in the Finite Element Method and Applications , 1983 .
[7] Serge Nicaise,et al. An a posteriori error estimator for the Lamé equation based on equilibrated fluxes , 2007 .
[8] Michael Vogelius,et al. Conforming finite element methods for incompressible and nearly incompressible continua , 1984 .
[9] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[10] S. Repin. A Posteriori Estimates for Partial Differential Equations , 2008 .
[11] Cornelius O. Horgan,et al. Korn's Inequalities and Their Applications in Continuum Mechanics , 1995, SIAM Rev..
[12] Carsten Carstensen,et al. A unifying theory of a posteriori finite element error control , 2005, Numerische Mathematik.
[13] C. P. Gupta,et al. A family of higher order mixed finite element methods for plane elasticity , 1984 .
[14] Dietrich Braess,et al. Equilibrated residual error estimator for edge elements , 2007, Math. Comput..
[15] Dietrich Braess,et al. Equilibrated residual error estimates are p-robust , 2009 .
[16] William F. Mitchell,et al. A comparison of adaptive refinement techniques for elliptic problems , 1989, TOMS.
[17] D. Schötzau,et al. An hp-adaptive mixed discontinuous Galerkin FEM for nearly incompressible linear elasticity , 2006 .
[18] C. Carstensen,et al. Partition of unity for localization in implicit a posteriori finite element error control for linear elasticity , 2008 .
[19] R. Verfürth. A review of a posteriori error estimation techniques for elasticity problems , 1999 .
[20] Mark Ainsworth,et al. Realistic computable error bounds for three dimensional finite element analyses in linear elasticity , 2011 .
[21] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[22] I. Babuska,et al. On locking and robustness in the finite element method , 1992 .
[23] I. Babuska,et al. Finite Element Analysis , 2021 .
[24] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[25] J. Melenk,et al. An adaptive strategy for hp-FEM based on testing for analyticity , 2007 .
[26] L. Demkowicz,et al. Mixed hp-Finite Element Method for Linear Elasticity with Weakly Imposed Symmetry: Stability Analysis , 2009, SIAM J. Numer. Anal..
[27] Wolfgang Dahmen,et al. Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.
[28] I. Babuska,et al. Locking effects in the finite element approximation of plate models , 1995 .
[29] Barbara I. Wohlmuth,et al. On residual-based a posteriori error estimation in hp-FEM , 2001, Adv. Comput. Math..
[30] Weifeng Qiu,et al. Mixed hp-Finite Element Method for Linear Elasticity with Weakly Imposed Symmetry: Stability Analysis , 2011, SIAM J. Numer. Anal..
[31] I. Babuska,et al. Locking effects in the finite element approximation of elasticity problems , 1992 .
[32] Dietrich Braess. Finite Elements: Introduction , 2007 .
[33] D. Arnold,et al. Mixed Finite Elements for Elasticity in the Stress-Displacement Formulation , 2002 .
[34] C. Schwab. P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .
[35] L. R. Scott,et al. Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials , 1985 .