Isthmus‐guided Cortical Bone Trajectory Reduces Postoperative Increases in Serum Creatinine Phosphokinase Concentrations

This study aimed to determine whether an isthmus‐guided cortical bone trajectory (CBT) technique provides better clinical outcomes than the original cortical bone trajectory CBT technique for screw fixation.

[1]  N. Hosogane,et al.  Cortical Bone Trajectory for Thoracic Pedicle Screws: A Technical Note , 2014, Clinical spine surgery.

[2]  C. Puttlitz,et al.  Pedicle screw placement in the lumbar spine: effect of trajectory and screw design on acute biomechanical purchase. , 2015, Journal of neurosurgery. Spine.

[3]  K. Bachus,et al.  Cortical screws used to rescue failed lumbar pedicle screw construct: a biomechanical analysis. , 2015, Journal of neurosurgery. Spine.

[4]  K. Uchida,et al.  Should we use cortical bone screws for cortical bone trajectory? , 2015, Journal of neurosurgery. Spine.

[5]  T. Yoshimine,et al.  Isthmus‐guided Cortical Bone Trajectory for Pedicle Screw Insertion , 2014, Orthopaedic surgery.

[6]  T. Asazuma,et al.  In Vivo Analysis of Insertional Torque During Pedicle Screwing Using Cortical Bone Trajectory Technique , 2014, Spine.

[7]  G. Inoue,et al.  Posterior corrective fusion using a double-trajectory technique (cortical bone trajectory combined with traditional trajectory) for degenerative lumbar scoliosis with osteoporosis: technical note. , 2013, Journal of neurosurgery. Spine.

[8]  T. Asazuma,et al.  Morphometric Measurement of Cortical Bone Trajectory for Lumbar Pedicle Screw Insertion Using Computed Tomography , 2013, Journal of spinal disorders & techniques.

[9]  N. Crawford,et al.  Biomechanics of Lumbar Cortical Screw–Rod Fixation Versus Pedicle Screw–Rod Fixation With and Without Interbody Support , 2013, Spine.

[10]  R. Mobbs The “Medio‐Latero‐Superior Trajectory Technique”: an Alternative Cortical Trajectory for Pedicle Fixation , 2013, Orthopaedic surgery.

[11]  S. S. St. Clair,et al.  Pedicle screw insertion angle and pullout strength: comparison of 2 proposed strategies. , 2011, Journal of neurosurgery. Spine.

[12]  A Jay Khanna,et al.  Instrumentation of the osteoporotic spine: biomechanical and clinical considerations. , 2011, The spine journal : official journal of the North American Spine Society.

[13]  F. Zhao,et al.  Comparison of paraspinal muscle injury in one‐level lumbar posterior inter‐body fusion: modified minimally invasive and traditional open approaches , 2010, Orthopaedic surgery.

[14]  S. Cho,et al.  The biomechanics of pedicle screw-based instrumentation. , 2010, The Journal of bone and joint surgery. British volume.

[15]  C. Puttlitz,et al.  Cortical bone trajectory for lumbar pedicle screws. , 2009, The spine journal : official journal of the North American Spine Society.

[16]  H. Matsui,et al.  Back Muscle Injury After Posterior Lumbar Spine Surgery: A Histologic and Enzymatic Analysis , 1996, Spine.

[17]  Yoshiharu Kawaguchi,et al.  Back muscle injury after posterior lumbar spine surgery. Part 2: Histologic and histochemical analyses in humans. , 1994 .

[18]  D N Kunz,et al.  Pedicle Screw Pullout Strength: Correlation with Insertional Torque , 1993, Spine.

[19]  P. Singhal,et al.  Determinants of elevated creatine kinase activity and creatine kinase MB-fraction following cardiopulmonary resuscitation. , 1992, Chest.

[20]  E. Transfeldt,et al.  Experimental Pullout Testing and Comparison of Variables in Transpedicular Screw Fixation: A Biomechanical Study , 1990, Spine.