Sequential Matrix Diagonalisation Algorithms for Polynomial EVD of Parahermitian Matrices

For parahermitian polynomial matrices, which can be used, for example, to characterize space-time covariance in broadband array processing, the conventional eigenvalue decomposition (EVD) can be generalized to a polynomial matrix EVD (PEVD). In this paper, a new iterative PEVD algorithm based on sequential matrix diagonalization (SMD) is introduced. At every step the SMD algorithm shifts the dominant column or row of the polynomial matrix to the zero lag position and eliminates the resulting instantaneous correlation. A proof of convergence is provided, and it is demonstrated that SMD establishes diagonalization faster and with lower order operations than existing PEVD algorithms.

[1]  Ali M. Reza,et al.  A DFT-based approximate eigenvalue and singular value decomposition of polynomial matrices , 2013, EURASIP J. Adv. Signal Process..

[2]  John G. McWhirter,et al.  Polynomial matrix QR decomposition for the decoding of frequency selective multiple-input multiple-output communication channels , 2012, IET Signal Process..

[3]  L. Vandendorpe,et al.  Oversampled filter banks as error correcting codes: theory and impulse noise correction , 2005, IEEE Transactions on Signal Processing.

[4]  John G. McWhirter,et al.  An approximate polynomial matrix eigenvalue decomposition algorithm for para-Hermitian matrices , 2011, 2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT).

[5]  John G. McWhirter,et al.  Paraunitary Oversampled Filter Bank Design for Channel Coding , 2006, EURASIP J. Adv. Signal Process..

[6]  Chi Hieu Ta,et al.  A jointly optimal precoder and block decision feedback equaliser design with low redundancy , 2007, 2007 15th European Signal Processing Conference.

[7]  A. Paulraj,et al.  MIMO Wireless Linear Precoding , 2007, IEEE Signal Processing Magazine.

[8]  Russell H. Lambert,et al.  POLYNOMIAL SINGULAR VALUES FOR NUMBER OF WIDEBAND SOURCES ESTIMATION AND PRINCIPAL COMPONENT ANALYSIS , 2001 .

[9]  Mats Bengtsson,et al.  Wideband MIMO channel diagonalization in the time domain , 2011, 2011 IEEE 22nd International Symposium on Personal, Indoor and Mobile Radio Communications.

[10]  Rohit U. Nabar,et al.  Introduction to Space-Time Wireless Communications , 2003 .

[11]  Stephan Weiss On the design of oversampled filter banks for channel coding , 2004, 2004 12th European Signal Processing Conference.

[12]  John G. McWhirter,et al.  Broadband angle of arrival estimation methods in a polynomial matrix decomposition framework , 2013, 2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[13]  Phillip A. Regalia,et al.  Attainable error bounds in multirate adaptive lossless FIR filters , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[14]  Robert Bregovic,et al.  Multirate Systems and Filter Banks , 2002 .

[15]  P. P. Vaidyanathan,et al.  Theory of optimal orthonormal subband coders , 1998, IEEE Trans. Signal Process..

[16]  Richard Klemm,et al.  Space-time adaptive processing : principles and applications , 1998 .

[17]  John G. McWhirter,et al.  Design of FIR Paraunitary Filter Banks for Subband Coding Using a Polynomial Eigenvalue Decomposition , 2011, IEEE Transactions on Signal Processing.

[18]  Stephan D. Weiss,et al.  MIMO Precoding for Filter Bank Modulation Systems Based on PSVD , 2011, 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring).

[19]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[20]  Pierre Comon,et al.  Some Properties of Laurent Polynomial Matrices , 2012 .

[21]  John G. McWhirter,et al.  An EVD Algorithm for Para-Hermitian Polynomial Matrices , 2007, IEEE Transactions on Signal Processing.

[22]  P. D. Baxter,et al.  Robust Broadband Adaptive Beamforming via Polynomial Eigenvalues , 2006, OCEANS 2006.

[23]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[24]  Andre Tkacenko,et al.  Approximate eigenvalue decomposition of para-Hermitian systems through successive FIR paraunitary transformations , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[25]  S. Weiss,et al.  A Design of Precoding and Equalisation for Broadband MIMO Systems , 2007, 2007 Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers.

[26]  S. Liberty,et al.  Linear Systems , 2010, Scientific Parallel Computing.

[27]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .