The Origin and Significance of Antarctic Meteorites

Abstract More than 25,000 meteorite specimens have been recovered from Antarctica since systematic collection programs began in the mid 1970's. When properly recovered and curated, these specimens serve as a uniquely representative sample of the extraterrestrial material accreting to our planet, providing our best glimpse of the full lithological and geochemical breadth of the inner solar system. Antarctic meteorite concentrations are intimately linked to variations in climate and ice sheet behavior over the past several million years, with each individual icefield exhibiting distinct and often unique characteristics.

[1]  S. M. Samuels,et al.  Ordinary chondrites: Multivariate statistical analysis of trace element contents☆ , 1991 .

[2]  G. Kurat,et al.  Preliminary Report on the Composition of Anhydrous Primary Mineral Phases in Micrometeorites from CAP Prudhomme, Antarctica , 1992 .

[3]  Density estimation in line transect sampling with grouped data by local least squares , 2002 .

[4]  J. Gooding Clay-mineraloid weathering products in Antarctic meteorites , 1986 .

[5]  H. Brown The density and mass distribution of meteoritic bodies in the neighborhood of the Earth's orbit , 1960 .

[6]  David R. Anderson,et al.  Field trials of line transect methods applied to estimation of desert tortoise abundance , 2001 .

[7]  K. Misawa,et al.  Magnesium isotopic fractionations in barred olivine chondrules from the Allende meteorite , 2000 .

[8]  D. Lingner,et al.  Antarctic and non-Antarctic meteorites form different populations , 1986, Nature.

[9]  M. Döbeli,et al.  Exposure of Allan Hills 84001 and other achondrites on the Antarctic ice , 1998, Meteoritics & planetary science.

[10]  A. Higashi,et al.  Structural Studies Of Bare Ice Near The Allan Hills, Victoria Land, Antarctica: A Mechanism Of Meteorite Concentration , 1982, Annals of Glaciology.

[11]  Georg Delisle,et al.  The meteorite collection sites of Antarctica , 1992 .

[12]  J. Zipfel,et al.  The Meteoritical Bulletin, No. 86, 2002 July , 2002 .

[13]  S. P. Worden,et al.  The flux of small near-Earth objects colliding with the Earth , 2002, Nature.

[14]  Richard Bintanja,et al.  On the glaciological, meteorological, and climatological significance of Antarctic blue ice areas , 1999 .

[15]  H. Takeda,et al.  Mineralogy of slowly cooled eucrites and thermal histories of the HED parent body. , 1988 .

[16]  G. Denton,et al.  Miocene-Pliocene-Pleistocene glacial history of Arena Valley, Quartermain Mountains, Antarctica , 1993 .

[17]  P G Brown,et al.  The fall, recovery, orbit, and composition of the Tagish Lake meteorite: a new type of carbonaceous chondrite. , 2000, Science.

[18]  R. Cresswell Meteorite concentrations in Antarctica: Sites of Katabatic Wind Ablation? , 1988 .

[19]  R. Clayton,et al.  The K (Kakangari) chondrite grouplet , 1996 .

[20]  R. Clayton,et al.  The CR chondrite clan , 1995 .

[21]  J. Annexstad,et al.  Antarctic meteorites: review , 1989 .

[22]  Timothy J. McCoy,et al.  Non-chondritic meteorites from asteroidal bodies , 1998 .

[23]  M. Kimura,et al.  Mass distribution of Antarctic ordinary chondrites and the estimation of the fall-to-specimen ratios , 1992 .

[24]  R. Harvey,et al.  A statistical comparison of Antarctic finds and modern falls: Mass frequency distributions and relative abundance by type , 1989 .

[25]  K. Keil,et al.  Meteoritic parent bodies: Their number and identification , 2002 .

[26]  J. Jouzel,et al.  Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica , 1999, Nature.

[27]  K. Keil,et al.  PARTIAL MELTING AND MELT MIGRATION IN THE ACAPULCOITE-LODRANITE PARENT BODY , 1997 .

[28]  T. Murae FT-IR spectroscopic studies of major organic matter in carbonaceous chondrites using microscopic technique and comparison with terrestrial kerogen , 1994 .

[29]  Brook,et al.  Abrupt climate change at the end of the last glacial period inferred from trapped air in polar Ice , 1999, Science.

[30]  C. Pillinger,et al.  Compound Specific Isotope Analysis of Polycyclic Aromatic Hydrocarbons in Carbonaceous Chondrites , 1991 .

[31]  A. J. T. Jull,et al.  Isotopic composition of carbonates in the SNC meteorites, Allan Hills 84001 and Zagami , 1997 .

[32]  M. Broeke,et al.  The Surface Energy Balance of Antarctic Snow and Blue Ice , 1995 .

[33]  M. Shima,et al.  Mineralogical and chemical composition of new Antarctica meteorites. , 1973 .

[34]  J. Wasson Ungrouped Iron Meteorites in Antarctica: Origin of Anomalously High Abundance , 1990, Science.

[35]  M. Lindstrom,et al.  Generation of abnormal trace element abundances in Antarctic eucrites by weathering processes , 1991 .

[36]  R. Clayton,et al.  The pyroxene pallasites, Vermillion and Yamato 8451: Not quite a couple , 2000 .

[37]  J. Tison,et al.  Preservation of Miocene glacier ice in East Antarctica , 1995, Nature.

[38]  R. Anderson Erosion profiles due to particles entrained by wind: Application of an eolian sediment-transport model , 1986 .

[39]  R. P. Harvey,et al.  Direct evidence of in-ice or pre-ice weathering of Antarctic meteorites , 1991 .

[40]  John B. Anderson,et al.  The Antarctic Ice Sheet during the Last Glacial Maximum and its subsequent retreat history: a review , 2002 .

[41]  R. Brown,et al.  The Home of the Blizzard , 1915 .

[42]  Alessandro Capra,et al.  The Frontier Mountain meteorite trap (Antarctica) , 2002 .

[43]  I. Halliday,et al.  A Study of the Relative Rates of Meteorite Falls on the Earth's Surface , 1982 .

[44]  William Whittaker,et al.  Robotic Antarctic meteorite search: outcomes , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[45]  K. Fredriksson,et al.  Meteoritic debris from the Southern California desert , 1963 .

[46]  G. Denton,et al.  Reconstructing the Antarctic Ice Sheet at the Last Glacial Maximum. , 2002 .

[47]  Sequential Estimation in Line Transect Surveys , 2002, Biometrics.

[48]  Masamichi Miyamoto,et al.  Infrared diffuse reflectance spectra of several thermallymetamorphosed carbonaceous chondrites , 1992 .

[49]  Ivan E. Wilson,et al.  A CENSUS OF THE METEORITES OF ROOSEVELT COUNTY, NEW MEXICO , 1973 .

[50]  Monica M. Grady,et al.  Catalogue of Meteorites , 2000 .

[51]  Eric M. Eliason,et al.  Multispectral Landsat images of Antarctica , 1987 .

[52]  A. Rubin,et al.  Chondrules in the LEW85332 ungrouped carbonaceous chondrite: fractionation processes in the solar nebula , 2000 .

[53]  F. Whipple The Theory of Micro-Meteorites: Part I. In an Isothermal Atmosphere. , 1950, Proceedings of the National Academy of Sciences of the United States of America.

[54]  B. Lucchitta,et al.  Investigating Climate Change by Digital Analysis of Blue Ice Extent on Satellite Images of Antarctica , 1990, Annals of Glaciology.

[55]  G. Huss Meteorite mass distributions and differences between Antarctic and non-Antarctic meteorites , 1991 .

[56]  G. Wetherill Where do the meteorites come from? A re-evaluation of the earth-crossing apollo objects as sources of chondritic meteorites☆ , 1976 .

[57]  J. Delaney,et al.  Terrestrial microfossils in Antarctic ordinary chondrites , 1999 .

[58]  A H Welsh,et al.  Line Transect Sampling in Small Regions , 2001, Biometrics.

[59]  H. Takeda,et al.  On the chondrite-achondrite transition - Mineralogy and chemistry of Yamato 74160 (LL7) , 1984 .

[60]  G. Huss Meteorite Infall as a Function of Mass: Implications for the Accumulation of Meteorites on Antarctic Ice , 1990 .

[61]  M. Lindstrom,et al.  Petrology and geochemistry of Patuxent Range 91501, a clast‐poor impact melt from the L‐chondrite parent body and Lewis Cliff 88663, an L7 chondrite , 2001 .

[62]  C. Pillinger,et al.  Comparisons between Antarctic and non-Antarctic meteorites based on carbon isotope geochemistry , 1991 .

[63]  K. Welten,et al.  Lewis Cliff 86360: An Antarctic L‐chondrite with a terrestrial age of 2.35 million years , 1997 .

[64]  Klaus Keil,et al.  Origin of unusual impact melt rocks, Yamato-790964 and 790143 (LL-chondrites) , 1998 .

[65]  S. M. Samuels,et al.  Antarctic and Non-Antarctic Meteorites: Different Populations , 1988 .

[66]  M. Burkland,et al.  Noble gases, bulk chemistry, and petrography of olivine‐rich achondrites Eagles Nest and Lewis Cliff 88763: Comparison to brachinites , 1998 .

[67]  D. Mittlefehldt,et al.  ALH84001, a cumulate orthopyroxenite member of the martian meteorite clan , 1994 .

[68]  I. Whillans,et al.  Catch a Falling Star: Meteorites and Old Ice , 1983, Science.

[69]  G. Delisle,et al.  Sub‐ice topography and meteorite finds near the Allan Hills and the Near Western Ice Field, Victoria Land, Antarctica , 1991 .

[70]  M. Lindstrom Antarctic Meteorite Newsletter , 2000 .

[71]  K. Keil,et al.  Recognizing mercurian meteorites , 1995 .

[72]  J. G. Ferrigno,et al.  Blue ice, meteorites and satellite imagery in Antarctica , 1983, Polar Record.

[73]  M. Lipschutz,et al.  Olivine diogenites: The mantle of the eucrite parent body , 1991 .

[74]  David L. Borchers,et al.  Abundance of harbour porpoise and other cetaceans in the North Sea and adjacent waters , 2002 .

[75]  G. Delisle Global change, Antarctic meteorite traps and the East Antarctic ice sheet , 1993, Journal of Glaciology.

[76]  N. Takaaki Petrology and mineralogy of CK chondrites: Implications for the metamorphism of the CK chondrite parent body , 1993 .

[77]  C. Koeberl,et al.  Differences between Antarctic and non-Antarctic meteorites: An assessment , 1991 .

[78]  Y. Ikeda An overview of the research consortium,"Antarctic carbonaceouschondrites with CI affinities, Yamato-86720, Yamato-82162, andBelgica-7904 , 1992 .

[79]  J. Drummond Earth-approaching asteroid streams , 1991 .

[80]  M. Spilde,et al.  Metamorphic diogenite Grosvenor Mountains 95555: Mineral chemistry of orthopyroxene and spinel and comparisons to the diogenite suite , 2000 .

[81]  David J. A. Evans,et al.  Glaciers and Glaciation , 1997 .