A semi-infinite programming based algorithm for finding minimax optimal designs for nonlinear models
暂无分享,去创建一个
[1] H. Wynn. Results in the Theory and Construction of D‐Optimum Experimental Designs , 1972 .
[2] Berç Rustem,et al. A global optimization algorithm for generalized semi-infinite, continuous minimax with coupled constraints and bi-level problems , 2009, J. Glob. Optim..
[3] R. Dennis Cook,et al. Heteroscedastic G-optimal Designs , 1993 .
[4] Holger Dette,et al. Maximin optimal designs for the compartmental model , 2003 .
[5] Bartosz Kuczewski. Computational aspects of discrimination between models of dynamic systems , 2006 .
[6] V. Fedorov,et al. Convex design theory 1 , 1980 .
[7] Kenneth O. Kortanek,et al. Semi-Infinite Programming: Theory, Methods, and Applications , 1993, SIAM Rev..
[8] H. Luthi. Algorithms for Worst-Case Design and Applications to Risk Management:Algorithms for Worst-Case Design and Applications to Risk Management , 2002 .
[9] Armen Der Kiureghian,et al. Adaptive Approximations and Exact Penalization for the Solution of Generalized Semi-infinite Min-Max Problems , 2003, SIAM J. Optim..
[10] Christopher J. Nachtsheim,et al. Model Robust, Linear-Optimal Designs , 1982 .
[11] Ilya S. Molchanov,et al. Steepest descent algorithms in a space of measures , 2002, Stat. Comput..
[12] Marco A. López,et al. Semi-infinite programming , 2007, Eur. J. Oper. Res..
[13] William K. W. Li. Consideration of errors in estimating kinetic parameters based on Michaelis‐Menten formalism in microbial ecology , 1983 .
[14] Wilfried Seidel,et al. A minimax algorithm for constructing optimal symmetrical balanced designs for a logistic regression model , 2000 .
[15] Timothy E. O'Brien,et al. Designing for Parameter Subsets in Gaussian Nonlinear Regression Models , 2021, Journal of Data Science.
[16] D. G. Watts,et al. A Quadratic Design Criterion for Precise Estimation in Nonlinear Regression Models , 1985 .
[17] J. E. Falk,et al. Infinitely constrained optimization problems , 1976 .
[18] Arne Drud,et al. CONOPT: A GRG code for large sparse dynamic nonlinear optimization problems , 1985, Math. Program..
[19] K. Kortanek,et al. Equivalence Theorems and Cutting Plane Algorithms for a Class of Experimental Design Problems , 1977 .
[20] Holger Dette,et al. On the number of support points of maximin and Bayesian optimal designs , 2007, 0708.1901.
[21] Toby J. Mitchell,et al. An algorithm for the construction of “ D -optimal” experimental designs , 2000 .
[22] Douglas C. Montgomery,et al. An Expository Paper on Optimal Design , 2011 .
[23] W. Wong,et al. Minimax d-optimal designs for item response theory models , 2000 .
[24] K. Chaloner,et al. Optimal Bayesian design applied to logistic regression experiments , 1989 .
[25] Jesús López-Fidalgo,et al. MV-optimization in Simple Linear Regression , 1995 .
[26] Christine H. Müller,et al. Maximin efficient designs for estimating nonlinear aspects in linear models , 1995 .
[27] K. Chaloner,et al. Bayesian Experimental Design: A Review , 1995 .
[28] R. Prentice,et al. A generalization of the probit and logit methods for dose response curves. , 1976, Biometrics.
[29] Weichung Wang,et al. Minimax optimal designs via particle swarm optimization methods , 2015, Stat. Comput..
[30] Maciej Patan,et al. Optimum Design of Experiments for Enzyme Inhibition Kinetic Models , 2011, Journal of biopharmaceutical statistics.
[31] Anthony C. Atkinson,et al. Optimum Experimental Designs, with SAS , 2007 .
[32] John C. Plummer,et al. A Multistart Scatter Search Heuristic for Smooth NLP and MINLP Problems , 2005 .
[33] Holger Dette,et al. Designing Experiments with Respect to ‘Standardized’ Optimality Criteria , 1997 .
[34] Andrej Pázman,et al. Foundations of Optimum Experimental Design , 1986 .
[35] Oliver Stein,et al. On generalized semi-infinite optimization and bilevel optimization , 2002, Eur. J. Oper. Res..
[36] Holger Dette,et al. Bayesian D-optimal designs for exponential regression models , 1997 .
[37] Berç Rustem,et al. Semi-Infinite Programming and Applications to Minimax Problems , 2003, Ann. Oper. Res..
[38] Guillaume Sagnol,et al. Computing Optimal Designs of multiresponse Experiments reduces to Second-Order Cone Programming , 2009, 0912.5467.
[39] Shan Sun,et al. A class of adaptive distribution-free procedures , 1997 .
[40] Holger Dette,et al. E-optimal designs for the Michaelis–Menten model , 1999 .
[41] Holger Dette,et al. MINIMAX OPTIMAL DESIGNS IN NONLINEAR REGRESSION MODELS , 1998 .
[42] Weng Kee Wong,et al. An Introduction to Optimal Designs for Social and Biomedical Research , 2009 .
[43] Weng Kee Wong,et al. Optimal designs for the power logistic model , 2004 .
[44] Ray-Bing Chen,et al. Optimal minimax designs over a prespecified interval in a heteroscedastic polynomial model. , 2008, Statistics & probability letters.
[45] D'avid Papp,et al. Optimal Designs for Rational Function Regression , 2010, 1009.1444.
[46] W K Wong,et al. Minimax D‐Optimal Designs for the Logistic Model , 2000, Biometrics.
[47] W. J. Studden,et al. Theory Of Optimal Experiments , 1972 .
[48] J. Kiefer,et al. Time- and Space-Saving Computer Methods, Related to Mitchell's DETMAX, for Finding D-Optimum Designs , 1980 .
[49] W. J. Hill,et al. Design of Experiments for Subsets of Parameters , 1974 .
[50] Weng Kee Wong,et al. A unified approach to the construction of minimax designs , 1992 .
[51] Ying Zhang,et al. Bayesian D-Optimal Design for Generalized Linear Models , 2006 .
[52] Connie M. Borror,et al. Model-Robust Optimal Designs: A Genetic Algorithm Approach , 2004 .
[53] R. Sitter. Robust designs for binary data , 1992 .