Bidirectional Controlled Teleportation by Using 5-Qubit States: A Generalized View

Recently bidirectional controlled perfect teleportation using 5-qubit states are reported in Int. J. Theor. Phys. (2013), doi:10.1007/s10773-013-1484-8 and ibid (2012), doi:10.1007/s10773-012-1208-5. In this paper we have shown that there exists a class of 5-qubit quantum states that can be used for bidirectional controlled teleportation. Two out of the three reported cases are the special cases of the proposed class of 5-qubit quantum states and one of them is not strictly a case of controlled bidirectional quantum teleportation. Further, we have shown that one can in principle, construct infinitely many 5-qubit quantum states for this purpose. We have also shown that the idea can be extended to bidirectional controlled probabilistic teleportation. Some potential applications of the proposed scheme and its modified versions are also discussed in relation with the implementation of quantum remote control and quantum cryptography.

[1]  Chitra Shukla,et al.  Protocols of quantum key agreement solely using Bell states and Bell measurement , 2014, Quantum Inf. Process..

[2]  Marco Lucamarini,et al.  Secure deterministic communication without entanglement. , 2005, Physical review letters.

[3]  Chitra Shukla,et al.  Improved Protocols of Secure Quantum Communication Using W States , 2012, 1204.4573.

[4]  Chitra Shukla,et al.  Orthogonal-state-based deterministic secure quantum communication without actual transmission of the message qubits , 2014, Quantum Inf. Process..

[5]  Guang-Can Guo,et al.  Quantum cryptography based on interaction-free measurement , 1999 .

[6]  Zha Xin-Wei,et al.  Bidirectional swapping quantum controlled teleportation based on maximally entangled five-qubit state , 2010 .

[7]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[8]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[9]  Alessio Avella,et al.  Experimental quantum-cryptography scheme based on orthogonal states , 2010 .

[10]  A. Pati Minimum classical bit for remote preparation and measurement of a qubit , 1999, quant-ph/9907022.

[11]  T. Noh Counterfactual quantum cryptography. , 2008, Physical review letters.

[12]  Xin-Wei Zha,et al.  Bidirectional Quantum Controlled Teleportation via Five-Qubit Cluster State , 2013 .

[13]  Li-Xin Xia,et al.  Hierarchical quantum-information splitting , 2009, 0906.0826.

[14]  Masato Koashi,et al.  Quantum Cryptography Based on Split Transmission of One-Bit Information in Two Steps , 1997 .

[15]  Vivek Kothari,et al.  On the group-theoretic structure of a class of quantum dialogue protocols , 2013 .

[16]  V. Scarani,et al.  Device-independent quantum key distribution secure against collective attacks , 2009, 0903.4460.

[17]  R. Srikanth,et al.  Secure quantum communication with orthogonal states , 2014, 1407.3412.

[18]  Adrian Kent,et al.  No signaling and quantum key distribution. , 2004, Physical review letters.

[19]  Vishal Sharma,et al.  Controlled bidirectional remote state preparation in noisy environment: a generalized view , 2014, Quantum Inf. Process..

[20]  R. Srikanth,et al.  The quantum cryptographic switch , 2011, Quantum Information Processing.

[21]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[22]  M. Bourennane,et al.  Quantum teleportation using three-particle entanglement , 1998 .

[23]  R. Srikanth,et al.  Two-step orthogonal-state-based protocol of quantum secure direct communication with the help of order-rearrangement technique , 2012, Quantum Information Processing.

[24]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[25]  London,et al.  Quantum Remote Control: Teleportation of Unitary Operations , 2000, quant-ph/0005061.

[26]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[27]  Yi-you Nie,et al.  Quantum Secure Direct Communication Based on Four-Qubit Cluster States , 2013 .

[28]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[29]  Jun Zhou,et al.  High-capacity Deterministic Secure Four-qubit W State Protocol for Quantum Communication Based on Order Rearrangement of Particle Pairs , 2011 .

[30]  S. Huelga,et al.  Remote control of restricted sets of operations: Teleportation of Angles , 2001, quant-ph/0107110.

[31]  Tzonelih Hwang,et al.  Quantum key distribution protocol using dense coding of three-qubit W state , 2011 .

[32]  Yuan-hua Li,et al.  Bidirectional Controlled Teleportation by Using a Five-Qubit Composite GHZ-Bell State , 2013 .

[33]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[34]  Hatim Salih,et al.  Protocol for direct counterfactual quantum communication. , 2012, Physical review letters.

[35]  Anirban Pathak,et al.  Efficient quantum circuits for perfect and controlled teleportation of n-qubit non-maximally entangled states of generalized Bell-type , 2010, 1006.1042.

[36]  Min Ren,et al.  Experimental demonstration of counterfactual quantum key distribution , 2010, 1003.4621.

[37]  Chitra Shukla,et al.  Hierarchical quantum communication , 2013, 1301.0498.

[38]  曹海静,et al.  Quantum Secure Direct Communication with W State , 2006 .

[39]  A. Banerjee,et al.  Maximally efficient protocols for direct secure quantum communication , 2012 .

[40]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[41]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[42]  Yang Liu,et al.  Experimental demonstration of counterfactual quantum communication. , 2011, Physical review letters.

[43]  Goldenberg,et al.  Quantum cryptography based on orthogonal states. , 1995, Physical review letters.

[44]  R. Srikanth,et al.  BEYOND THE GOLDENBERG–VAIDMAN PROTOCOL: SECURE AND EFFICIENT QUANTUM COMMUNICATION USING ARBITRARY, ORTHOGONAL, MULTI-PARTICLE QUANTUM STATES , 2012 .