Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems

We study the convergence properties of the hp-version of the local discontinuous Galerkin finite element method for convection-diffusion problems; we consider a model problem in a one-dimensional space domain. We allow arbitrary meshes and polynomial degree distributions and obtain upper bounds for the energy norm of the error which are explicit in the mesh-width h, in the polynomial degree p, and in the regularity of the exact solution. We identify a special numerical flux for which the estimates are optimal in both h and p. The theoretical results are confirmed in a series of numerical examples.

[1]  P. Raviart,et al.  On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .

[2]  Jens Markus Melenk,et al.  An hp finite element method for convection-diffusion problems in one dimension , 1999 .

[3]  George Em Karniadakis,et al.  The Development of Discontinuous Galerkin Methods , 2000 .

[4]  Paul Castillo,et al.  An Optimal Estimate for the Local Discontinuous Galerkin Method , 2000 .

[5]  Jens Markus Melenk,et al.  On the robust exponential convergence of hp finite element methods for problems with boundary layers , 1997 .

[6]  Clint Dawson,et al.  Some Extensions Of The Local Discontinuous Galerkin Method For Convection-Diffusion Equations In Mul , 1999 .

[7]  M. Melenk On Robust Exponential Convergence of Hp Nite Element Methods for Problems with Boundary Layers , 1996 .

[8]  B. Rivière,et al.  Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I , 1999 .

[9]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[10]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[11]  Dominik Schötzau,et al.  hp-DGFEM for parabolic evolution problems , 1999 .

[12]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[13]  Christoph Schwab,et al.  The p and hp versions of the finite element method for problems with boundary layers , 1996, Math. Comput..

[14]  Paul Houston,et al.  Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..

[15]  E. Süli,et al.  Discontinuous hp-finite element methods for advection-diffusion problems , 2000 .

[16]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[17]  Bernardo Cockburn,et al.  Discontinuous Galerkin Methods for Convection-Dominated Problems , 1999 .

[18]  Chi-Wang Shu,et al.  The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws , 1988, ESAIM: Mathematical Modelling and Numerical Analysis.

[19]  I. Babuska,et al.  A DiscontinuoushpFinite Element Method for Diffusion Problems , 1998 .

[20]  SwitzerlandPaul HoustonOxford,et al.  Hp-dgfem for Partial Diierential Equations with Nonnegative Characteristic Form , 1999 .

[21]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[22]  Jens Markus Melenk,et al.  Analytic regularity for a singularly perturbed problem , 1999 .

[23]  B. Rivière,et al.  A Discontinuous Galerkin Method Applied to Nonlinear Parabolic Equations , 2000 .

[24]  Chi-Wang Shu Total-variation-diminishing time discretizations , 1988 .

[25]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[26]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[27]  J. Oden,et al.  A discontinuous hp finite element method for convection—diffusion problems , 1999 .

[28]  E. Süli,et al.  hp-finite element methods for hyperbolic problems , 1999 .

[29]  Timothy J. Barth,et al.  High-order methods for computational physics , 1999 .

[30]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[31]  Dominik Schötzau,et al.  Time Discretization of Parabolic Problems by the HP-Version of the Discontinuous Galerkin Finite Element Method , 2000, SIAM J. Numer. Anal..

[32]  Jens Markus Melenk,et al.  hp FEM for Reaction-Diffusion Equations I: Robust Exponential Convergence , 1998 .

[33]  Dominik Schötzau Abstract of the PhD thesis: “hp-DGFEM for parabolic evolution problems – applications to diffusion and viscous incompressible fluid flow” , 2000 .

[34]  Jens Markus Melenk,et al.  An hp finite element method for convection-diffusion problems , 1997 .