Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems
暂无分享,去创建一个
Bernardo Cockburn | Dominik Schötzau | Christoph Schwab | Paul Castillo | Bernardo Cockburn | D. Schötzau | C. Schwab | P. Castillo
[1] P. Raviart,et al. On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .
[2] Jens Markus Melenk,et al. An hp finite element method for convection-diffusion problems in one dimension , 1999 .
[3] George Em Karniadakis,et al. The Development of Discontinuous Galerkin Methods , 2000 .
[4] Paul Castillo,et al. An Optimal Estimate for the Local Discontinuous Galerkin Method , 2000 .
[5] Jens Markus Melenk,et al. On the robust exponential convergence of hp finite element methods for problems with boundary layers , 1997 .
[6] Clint Dawson,et al. Some Extensions Of The Local Discontinuous Galerkin Method For Convection-Diffusion Equations In Mul , 1999 .
[7] M. Melenk. On Robust Exponential Convergence of Hp Nite Element Methods for Problems with Boundary Layers , 1996 .
[8] B. Rivière,et al. Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I , 1999 .
[9] Chi-Wang Shu,et al. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .
[10] Chi-Wang Shu,et al. TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .
[11] Dominik Schötzau,et al. hp-DGFEM for parabolic evolution problems , 1999 .
[12] Chi-Wang Shu,et al. The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .
[13] Christoph Schwab,et al. The p and hp versions of the finite element method for problems with boundary layers , 1996, Math. Comput..
[14] Paul Houston,et al. Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..
[15] E. Süli,et al. Discontinuous hp-finite element methods for advection-diffusion problems , 2000 .
[16] Chi-Wang Shu,et al. The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .
[17] Bernardo Cockburn,et al. Discontinuous Galerkin Methods for Convection-Dominated Problems , 1999 .
[18] Chi-Wang Shu,et al. The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws , 1988, ESAIM: Mathematical Modelling and Numerical Analysis.
[19] I. Babuska,et al. A DiscontinuoushpFinite Element Method for Diffusion Problems , 1998 .
[20] SwitzerlandPaul HoustonOxford,et al. Hp-dgfem for Partial Diierential Equations with Nonnegative Characteristic Form , 1999 .
[21] Chi-Wang Shu,et al. Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..
[22] Jens Markus Melenk,et al. Analytic regularity for a singularly perturbed problem , 1999 .
[23] B. Rivière,et al. A Discontinuous Galerkin Method Applied to Nonlinear Parabolic Equations , 2000 .
[24] Chi-Wang Shu. Total-variation-diminishing time discretizations , 1988 .
[25] S. Rebay,et al. A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .
[26] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[27] J. Oden,et al. A discontinuous hp finite element method for convection—diffusion problems , 1999 .
[28] E. Süli,et al. hp-finite element methods for hyperbolic problems , 1999 .
[29] Timothy J. Barth,et al. High-order methods for computational physics , 1999 .
[30] Chi-Wang Shu,et al. The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .
[31] Dominik Schötzau,et al. Time Discretization of Parabolic Problems by the HP-Version of the Discontinuous Galerkin Finite Element Method , 2000, SIAM J. Numer. Anal..
[32] Jens Markus Melenk,et al. hp FEM for Reaction-Diffusion Equations I: Robust Exponential Convergence , 1998 .
[33] Dominik Schötzau. Abstract of the PhD thesis: “hp-DGFEM for parabolic evolution problems – applications to diffusion and viscous incompressible fluid flow” , 2000 .
[34] Jens Markus Melenk,et al. An hp finite element method for convection-diffusion problems , 1997 .