Direct 2D spatial-coherence determination using the Fourier-analysis method: multi-parameter characterization of the P04 beamline at PETRA III

: We present a systematic 2D spatial-coherence analysis of the soft-X-ray beamline P04 at PETRA III for various beamline configurations. The influence of two different beam-defining apertures on the spatial coherence properties of the beam is discussed and optimal conditions for coherence-based experiments are found. A significant degradation of the spatial coherence in the vertical direction has been measured and sources of this degradation are identified and discussed. The Fourier-analysis method, which gives fast and simple access to the 2D spatial coherence function of the X-ray beam, is used for the experiment. Here, we exploit the charge scattering of a disordered nanodot sample allowing the use of arbitrary X-ray photon energies with this method.

[1]  W. Grizolli,et al.  Influence of optics vibration on synchrotron beam coherence. , 2019, Optics letters.

[2]  J. Buck,et al.  Progress report on the XUV online diagnostic unit for the highly accurate determination of SR properties , 2019 .

[3]  Mikael Eriksson,et al.  PETRA IV: the ultralow-emittance source project at DESY , 2018, Journal of synchrotron radiation.

[4]  Chunpeng Wang,et al.  Spatially correlated coherent diffractive imaging method. , 2018, Applied optics.

[5]  M. Rio About the coherent fraction of synchrotron emission , 2018, 1801.07542.

[6]  R. Tai,et al.  Mutual optical intensity propagation through non-ideal mirrors. , 2017, Journal of synchrotron radiation.

[7]  Garth J. Williams,et al.  Optical design and simulation of a new coherence beamline at NSLS-II , 2017, Optical Engineering + Applications.

[8]  Oleg Chubar,et al.  Simulation of experiments with partially coherent x-rays using Synchrotron Radiation Workshop , 2017, Optical Engineering + Applications.

[9]  Xianbo Shi,et al.  X-ray optics simulation and beamline design for the APS upgrade , 2017, Optical Engineering + Applications.

[10]  R. Tai,et al.  Effects of temperature, mechanical motion and source positional jitter on the resolving power of beamline 02B at the SSRF. , 2017, Journal of synchrotron radiation.

[11]  Christoph Rau,et al.  Coherence Length and Vibrations of the Coherence Beamline I13 at the Diamond Light Source , 2017 .

[12]  A. Peele,et al.  Modal approach for partially coherent diffractive imaging with simultaneous sample and coherence recovery. , 2017, Optics express.

[13]  Jianwei Miao,et al.  In situ coherent diffractive imaging , 2017, Nature Communications.

[14]  J. Basu,et al.  Coherent X-ray scattering reveals nature of dynamical transitions in nanoparticle–polymer suspensions , 2016 .

[15]  Pantaleo Raimondi,et al.  ESRF-EBS: The Extremely Brilliant Source Project , 2016 .

[16]  H. Oepen,et al.  Employing soft x-ray resonant magnetic scattering to study domain sizes and anisotropy in Co/Pd multilayers , 2016 .

[17]  I. Vartanyants,et al.  High-dynamic-range water window ptychography , 2016, 1610.02565.

[18]  G. Grübel,et al.  Spatial coherence determination from the Fourier analysis of a resonant soft X-ray magnetic speckle pattern. , 2016, Optics express.

[19]  David A. Shapiro,et al.  Soft x-ray ptychography studies of nanoscale magnetic and structural correlations in thin SmCo5 films , 2016 .

[20]  Kawal Sawhney,et al.  Two-dimensional transverse coherence measurement of hard-x-ray beams using near-field speckle , 2015 .

[21]  Shunji Goto,et al.  Effect of beamline optics vibration on the source size and divergence for synchrotron radiation , 2015, SPIE Optical Engineering + Applications.

[22]  T. Latychevskaia,et al.  The role of the coherence in the cross-correlation analysis of diffraction patterns from two-dimensional dense mono-disperse systems , 2015, Scientific Reports.

[23]  A. Hitchcock Soft X-ray spectromicroscopy and ptychography , 2015 .

[24]  C. Steier Possibilities for a Diffraction-Limited Upgrade of a Soft X-ray Light Source , 2014 .

[25]  K. V. Klementiev,et al.  Powerful scriptable ray tracing package xrt , 2014, Optics & Photonics - Optical Engineering + Applications.

[26]  Oleg G Shpyrko,et al.  X-ray photon correlation spectroscopy. , 2014, Journal of synchrotron radiation.

[27]  S. Leemann,et al.  The MAX IV storage ring project , 2014, Journal of synchrotron radiation.

[28]  T. Ishikawa,et al.  Optics for coherent X-ray applications , 2014, Journal of synchrotron radiation.

[29]  Albert T. Macrander,et al.  Circular grating interferometer for mapping transverse coherence area of X-ray beams , 2014 .

[30]  Robert Hettel,et al.  Challenges in the Design of Diffraction-limited Storage Rings , 2014 .

[31]  David Robin,et al.  Proposal for a Soft X-ray Diffraction Limited Upgrade of the ALS , 2014 .

[32]  Xianbo Shi,et al.  A hybrid method for X-ray optics simulation: combining geometric ray-tracing and wavefront propagation , 2014, Journal of synchrotron radiation.

[33]  A. Singer,et al.  Characterization of spatial coherence of synchrotron radiation with non-redundant arrays of apertures. , 2014, Journal of synchrotron radiation.

[34]  H Graafsma,et al.  Intensity interferometry of single x-ray pulses from a synchrotron storage ring. , 2014, Physical review letters.

[35]  Frank Siewert,et al.  The Variable Polarization XUV Beamline P04 at PETRA III: Optics, mechanics and their performance , 2013 .

[36]  Oleg Chubar,et al.  Wavefront propagation simulations for beamlines and experiments with "Synchrotron Radiation Workshop" , 2013 .

[37]  A. Singer,et al.  Hanbury Brown-Twiss interferometry at a free-electron laser. , 2013, Physical review letters.

[38]  A. Neumann Fabrication of Magnetic Co/Pt Nanodots Utilizing Filled Diblock Copolymers , 2012 .

[39]  Helmut Zacharias,et al.  Temporal and spatial coherence properties of free-electron-laser pulses in the extreme ultraviolet regime , 2011 .

[40]  David Robin,et al.  The Potential of an Ultimate Storage Ring for Future Light Sources , 2010 .

[41]  Michael Sprung,et al.  Soft x-ray holographic microscopy , 2010 .

[42]  M. Giglio,et al.  Probing the transverse coherence of an undulator x-ray beam using brownian particles. , 2009, Physical review letters.

[43]  L. Stadler,et al.  Magnetic soft x-ray holography study of focused ion beam-patterned Co/Pt multilayers , 2009 .

[44]  A. Singer,et al.  Coherence properties of hard x-ray synchrotron sources and x-ray free-electron lasers , 2009, 0907.4009.

[45]  Hideo Kitamura,et al.  Universal function for the brilliance of undulator radiation considering the energy spread effect. , 2009, Journal of synchrotron radiation.

[46]  J. F. Creemer,et al.  Nanoscale chemical imaging of a working catalyst by scanning transmission X-ray microscopy , 2008, Nature.

[47]  M. D. de Jonge,et al.  Quantitative phase imaging with a scanning transmission x-ray microscope. , 2008, Physical review letters.

[48]  H. Stillrich,et al.  Sub‐20 nm Magnetic Dots with Perpendicular Magnetic Anisotropy , 2008 .

[49]  A. G. Cullis,et al.  Hard-x-ray lensless imaging of extended objects. , 2007, Physical review letters.

[50]  Ian McNulty,et al.  Multiple reference Fourier transform holography with soft x rays , 2006 .

[51]  S. Eisebitt,et al.  Lensless imaging of magnetic nanostructures by X-ray spectro-holography , 2004, Nature.

[52]  Hidekazu Mimura,et al.  Image quality improvement in a hard X-ray projection microscope using total reflection mirror optics. , 2004, Journal of synchrotron radiation.

[53]  I. Robinson,et al.  Imaging of quantum array structures with coherent and partially coherent diffraction. , 2003, Journal of synchrotron radiation.

[54]  K. Nugent,et al.  Coherence transport through imperfect x-ray optical systems. , 2003, Optics express.

[55]  Ian K. Robinson,et al.  Sources of decoherence in beamline optics , 2003 .

[56]  I. Robinson,et al.  Origins of decoherence in coherent X-ray diffraction experiments , 2003 .

[57]  Pascal Elleaume,et al.  Undulators, Wigglers and Their Applications , 2002 .

[58]  T. Ishikawa,et al.  Characterization of the transverse coherence of hard synchrotron radiation by intensity interferometry. , 2001, Physical review letters.

[59]  Kohn,et al.  Direct measurement of transverse coherence length of hard X rays from interference fringes , 2000, Physical review letters.

[60]  Y Wang,et al.  Effect of surface roughness on the spatial coherence of X-ray beams from third-generation synchrotron radiation sources. , 2000, Journal of synchrotron radiation.

[61]  T Mairs,et al.  Conserving the coherence and uniformity of third-generation synchrotron radiation beams: the case of ID19, a 'long' beamline at the ESRF. , 1998, Journal of synchrotron radiation.

[62]  V. G. Kohn,et al.  On the requirements to the instrumentation for the new generation of the synchrotron radiation sources. Beryllium windows , 1996 .

[63]  M. T. Browne,et al.  Diffraction-limited imaging in a scanning transmission x-ray microscope , 1991, Optical Society of America Annual Meeting.

[64]  Kwang-Je Kim,et al.  Brightness, coherence, and propagation characteristics of synchrotron radiation , 1986 .

[65]  Kwang‐Je Kim,et al.  Angular distribution of undulator power for an arbitrary deflection parameter K , 1986 .

[66]  Shaukat Khan,et al.  Synchrotron Light Sources and Free-Electron Lasers , 2016 .

[67]  J. Hastings,et al.  Synchrotron light sources and free-electron lasers : accelerator physics, instrumentation and science applications , 2016 .

[68]  M Sutton,et al.  Small-angle X-ray scattering using coherent undulator radiation at the ESRF. , 1998, Journal of synchrotron radiation.

[69]  W. Thomlinson,et al.  Characteristics of synchrotron radiation , 1984 .