Spatiotemporal Models for Gaussian Areal Data

We introduce a class of spatiotemporal models for Gaussian areal data. These models assume a latent random field process that evolves through time with random field convolutions; the convolving fields follow proper Gaussian Markov random field (PGMRF) processes. At each time, the latent random field process is linearly related to observations through an observational equation with errors that also follow a PGMRF. The use of PGMRF errors brings modeling and computational advantages. With respect to modeling, it allows more flexible model structures such as different but interacting temporal trends for each region, as well as distinct temporal gradients for each region. Computationally, building upon the fact that PGMRF errors have proper density functions, we have developed an efficient Bayesian estimation procedure based on Markov chain Monte Carlo with an embedded forward information filter backward sampler (FIFBS) algorithm. We show that, when compared with the traditional one-at-a-time Gibbs sampler, our novel FIFBS-based algorithm explores the posterior distribution much more efficiently. Finally, we have developed a simulation-based conditional Bayes factor suitable for the comparison of nonnested spatiotemporal models. An analysis of the number of homicides in Rio de Janeiro State illustrates the power of the proposed spatiotemporal framework. Supplemental materials for this article are available online in the journal’s webpage.

[1]  S. E. Ahmed,et al.  Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 2008, Technometrics.

[2]  N. Best,et al.  Bayesian latent variable modelling of multivariate spatio-temporal variation in cancer mortality , 2008, Statistical methods in medical research.

[3]  Victor De Oliveira,et al.  Bayesian reference analysis for Gaussian Markov random fields , 2007 .

[4]  J. Ghosh,et al.  An Introduction to Bayesian Analysis: Theory and Methods , 2006 .

[5]  Siddhartha Chib,et al.  Inference in Semiparametric Dynamic Models for Binary Longitudinal Data , 2006 .

[6]  Ke Xu,et al.  A Kernel-Based Spatio-Temporal Dynamical Model for Nowcasting Weather Radar Reflectivities , 2005 .

[7]  Alan E. Gelfand,et al.  Spatial process modelling for univariate and multivariate dynamic spatial data , 2005 .

[8]  M. Stein Space–Time Covariance Functions , 2005 .

[9]  Volker J Schmid,et al.  Bayesian Extrapolation of Space–Time Trends in Cancer Registry Data , 2004, Biometrics.

[10]  L. M. Berliner,et al.  Hierarchical Bayesian space-time models , 1998, Environmental and Ecological Statistics.

[11]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[12]  Darren J. Wilkinson,et al.  Dynamic lattice-Markov spatio-temporal models for environmental data , 2003 .

[13]  M. Clyde,et al.  Model Uncertainty , 2003 .

[14]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[15]  P. Dixon,et al.  Analysis of particulate matter air pollution using Markov random field models of spatial dependence , 2002 .

[16]  H. Rue Fast sampling of Gaussian Markov random fields , 2000 .

[17]  L Knorr-Held,et al.  Bayesian modelling of inseparable space-time variation in disease risk. , 2000, Statistics in medicine.

[18]  N. Cressie,et al.  A dimension-reduced approach to space-time Kalman filtering , 1999 .

[19]  Bradley P. Carlin,et al.  Hierarchical Spatio-Temporal Mapping of Disease Rates , 1997 .

[20]  Michael A. West,et al.  Bayesian Forecasting and Dynamic Models (2nd edn) , 1997, J. Oper. Res. Soc..

[21]  J. Berger,et al.  The Intrinsic Bayes Factor for Model Selection and Prediction , 1996 .

[22]  Jurgen A. Doornik,et al.  Object-orientd matrix programming using OX , 1996 .

[23]  J. Besag,et al.  On conditional and intrinsic autoregressions , 1995 .

[24]  D. Clayton,et al.  Bayesian analysis of space-time variation in disease risk. , 1995, Statistics in medicine.

[25]  S. Frühwirth-Schnatter Bayesian Model Discrimination and Bayes Factors for Linear Gaussian State Space Models , 1995 .

[26]  A. O'Hagan,et al.  Fractional Bayes factors for model comparison , 1995 .

[27]  P. Guttorp,et al.  A space-time analysis of ground-level ozone data , 1994 .

[28]  R. Kohn,et al.  On Gibbs sampling for state space models , 1994 .

[29]  J. R. Wallis,et al.  An Approach to Statistical Spatial-Temporal Modeling of Meteorological Fields , 1994 .

[30]  S. Frühwirth-Schnatter Data Augmentation and Dynamic Linear Models , 1994 .

[31]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[32]  J. Besag,et al.  Bayesian image restoration, with two applications in spatial statistics , 1991 .

[33]  M. West,et al.  Bayesian forecasting and dynamic models , 1989 .

[34]  D. Rubin,et al.  Statistical Analysis with Missing Data. , 1989 .

[35]  M. West,et al.  Dynamic Generalized Linear Models and Bayesian Forecasting , 1985 .

[36]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[37]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[38]  F. J. Anscombe,et al.  THE TRANSFORMATION OF POISSON, BINOMIAL AND NEGATIVE-BINOMIAL DATA , 1948 .