On the Classification of MDS Codes

A q-ary code of length n, size M, and minimum distanced is called an (n,M,d)q code. An (n,q<sup>k</sup>,n - k + 1)<sub>q</sub> code is called a maximum distance separable (MDS) code. In this paper, some MDS codes over small alphabets are classified. It is shown that every (k + d - 1, q<sup>k</sup>, d)<sub>q</sub> code with k ≥ 3, d ≥ 3, q ∈ (5, 7} is equivalent to a linear code with the same parameters. This implies that the (6, 5<sup>4</sup>, 3)<sub>5</sub> code and the (n, 7<sup>n-2</sup>, 3)<sub>7</sub> MDS codes for n ∈ (6, 7, 8} are unique. The classification of one-error-correcting 8-ary MDS codes is also finished; there are 14, 8, 4, and 4 equivalence classes of (n, 8<sup>n-2</sup>, 3)<sub>8</sub> codes for n = 6, 7, 8, and 9, respectively. One of the equivalence classes of perfect (9, 8<sup>7</sup>, 3)<sub>8</sub> codes corresponds to the Hamming code and the other three are nonlinear codes for which there exists no previously known construction.

[1]  C. Colbourn,et al.  Mutually orthogonal latin squares (MOLS) , 2006 .

[2]  Patric R. J. Östergård,et al.  Classification of Graeco‐Latin Cubes , 2015 .

[3]  Simeon Ball,et al.  On sets of vectors of a finite vector space in which every subset of basis size is a basis II , 2012, Designs, Codes and Cryptography.

[4]  B. Bagchi,et al.  Latin squares , 2012 .

[5]  Bernt Lindström,et al.  On Group and Nongroup Perfect Codes in $q$ Symbols. , 1969 .

[6]  Richard C. Singleton,et al.  Maximum distance q -nary codes , 1964, IEEE Trans. Inf. Theory.

[7]  Olof Heden On perfect p-ary codes of length p + 1 , 2008, Des. Codes Cryptogr..

[8]  Ludovicus Marinus Gerardus Maria Tolhuizen,et al.  On maximum distance separable codes over alphabets of arbitrary size , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[9]  Kevin T. Phelps,et al.  Kernels and p-Kernels of pr-ary 1-Perfect Codes , 2005, Des. Codes Cryptogr..

[10]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[11]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[12]  T. Alderson Extending MDS Codes , 2005, Annals of Combinatorics.

[13]  Brendan D. McKay,et al.  Practical graph isomorphism, II , 2013, J. Symb. Comput..

[14]  Jian-sheng Yang,et al.  Note on maximal distance separable codes , 2009 .

[15]  Tim L. Alderson,et al.  (6,3)-MDS Codes over an Alphabet of Size 4 , 2006, Des. Codes Cryptogr..

[16]  T. Alderson,et al.  THE PARTITION WEIGHT ENUMERATOR AND BOUNDS ON MDS CODES , 2014 .