Nonlinear convergence in contact mechanics: Immersed boundary finite volume

Abstract We present an immersed boundary finite volume (IBM) method for simulating quasistatic contact mechanics of linearly elastic domains at small strains. In IBM, all external boundaries and internal contacts of an object are represented by embedded surfaces inside a Cartesian mesh, which need not conform to the grid lines. The contact constraints consist of the non-penetrability condition and Coulomb’s friction law, which are discretized using special interpolation stencils and enforced via penalty parameters. The resulting nonlinear system depends on displacement unknowns only. To solve it, we use the Newton method but find that it diverges frequently. To understand the divergence pattern, we analyze a simplified 2-cell problem and show that the global convergence of Newton cannot be ensured for any choice of penalty parameters. We thus propose a modified Newton solver, which guarantees convergence for the 2-cell problem and is numerically verified to converge for all the challenging simulations considered herein. While both 1st- and 2nd-order variants of IBM, in displacement unknowns, are proposed, the modified Newton solver applies only to the 1st-order variant.

[1]  J. Nordbotten Cell‐centered finite volume discretizations for deformable porous media , 2014 .

[2]  Andrea Franceschini,et al.  A novel Lagrangian approach for the stable numerical simulation of fault and fracture mechanics , 2016, J. Comput. Phys..

[3]  Ronaldo I. Borja,et al.  A contact algorithm for frictional crack propagation with the extended finite element method , 2008 .

[4]  I. Shovkun,et al.  Embedded Fracture Model for Coupled Flow and Geomechanics , 2020, ArXiv.

[5]  J. Napier,et al.  Symmetric‐Galerkin BEM simulation of fracture with frictional contact , 2003 .

[6]  Joshua A. White,et al.  Simulation of coupled multiphase flow and geomechanics in porous media with embedded discrete fractures , 2020, International Journal for Numerical and Analytical Methods in Geomechanics.

[7]  Barbara Wohlmuth,et al.  Isogeometric dual mortar methods for computational contact mechanics , 2016 .

[8]  P. W. Christensen,et al.  Frictional Contact Algorithms Based on Semismooth Newton Methods , 1998 .

[9]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[10]  Mengyan Zang,et al.  A contact algorithm for 3D discrete and finite element contact problems based on penalty function method , 2011 .

[11]  Stefan Jeschke,et al.  Non-smooth Newton Methods for Deformable Multi-body Dynamics , 2019, ACM Trans. Graph..

[12]  Tarek I. Zohdi,et al.  Rapid Voxel-Based Digital-Computation for Complex Microstructured Media , 2018, Archives of Computational Methods in Engineering.

[13]  Knut-Andreas Lie,et al.  An Introduction to Reservoir Simulation Using MATLAB/GNU Octave , 2019 .

[14]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[15]  Barbara Wohlmuth,et al.  Variationally consistent discretization schemes and numerical algorithms for contact problems* , 2011, Acta Numerica.

[16]  M. Wheeler,et al.  An augmented-Lagrangian method for the phase-field approach for pressurized fractures , 2014 .

[17]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[18]  J. Oden,et al.  Algorithms and numerical results for finite element approximations of contact problems with non-classical friction laws , 1984 .

[19]  E. S. Kuh,et al.  Piecewise-Linear Theory of Nonlinear Networks , 1972 .

[20]  Pierre Alart,et al.  Méthode de Newton généralisée en mécanique du contact , 1997 .

[21]  H. A. Tchelepi,et al.  Discrete fracture model for coupled flow and geomechanics , 2016, Computational Geosciences.

[22]  Panayiotis Papadopoulos,et al.  A Lagrange multiplier method for the finite element solution of frictionless contact problems , 1998 .

[23]  Barbara I. Wohlmuth,et al.  A Primal-Dual Active Set Algorithm for Three-Dimensional Contact Problems with Coulomb Friction , 2008, SIAM J. Sci. Comput..

[24]  H. Parisch A consistent tangent stiffness matrix for three‐dimensional non‐linear contact analysis , 1989 .

[25]  R. Borja Assumed enhanced strain and the extended finite element methods: A unification of concepts , 2008 .

[26]  J. Katzenelson An algorithm for solving nonlinear resistor networks , 1965 .

[27]  Noboru Kikuchi,et al.  Penalty/finite-element approximations of a class of unilateral problems in linear elasticity , 1981 .

[28]  J. Israelachvili,et al.  Relationship between adhesion and friction forces , 1994 .

[29]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[30]  J. C. Simo,et al.  An augmented lagrangian treatment of contact problems involving friction , 1992 .

[31]  P. Alart,et al.  A mixed formulation for frictional contact problems prone to Newton like solution methods , 1991 .

[32]  Eirik Keilegavlen,et al.  A finite-volume discretization for deformation of fractured media , 2018, Computational Geosciences.

[33]  Frédéric Lebon,et al.  Computational Contact Problems: Investigations on the Robustness of Generalized Newton Method, Fixed-Point method and Partial Newton Method , 2018, International Journal for Computational Methods in Engineering Science and Mechanics.

[34]  Peter Wriggers,et al.  A note on the optimum choice for penalty parameters , 1987 .

[35]  J. Rice,et al.  Elementary engineering fracture mechanics , 1974 .

[36]  E. Allgower,et al.  Introduction to Numerical Continuation Methods , 1987 .

[37]  J. C. Simo,et al.  A perturbed Lagrangian formulation for the finite element solution of contact problems , 1985 .

[38]  Roger A. Sauer,et al.  Continuum contact models for coupled adhesion and friction , 2018, The Journal of Adhesion.

[39]  Jan Martin Nordbotten Finite volume hydromechanical simulation in porous media , 2014, Water resources research.

[40]  P. W. Christensen,et al.  Formulation and comparison of algorithms for frictional contact problems , 1998 .

[41]  B. Bourdin,et al.  The Variational Approach to Fracture , 2008 .

[42]  Karl Kunisch,et al.  Generalized Newton methods for the 2D-Signorini contact problem with friction in function space , 2005 .

[43]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[44]  T. Laursen Computational Contact and Impact Mechanics: Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis , 2002 .

[45]  P. Alart,et al.  A generalized Newton method for contact problems with friction , 1988 .

[46]  D. Owen,et al.  Computational model for 3‐D contact problems with friction based on the penalty method , 1992 .

[47]  Yves Renard,et al.  Generalized Newton’s methods for the approximation and resolution of frictional contact problems in elasticity , 2013 .

[48]  Martin H. Sadd,et al.  Elasticity: Theory, Applications, and Numerics , 2004 .

[49]  I. Aavatsmark,et al.  An Introduction to Multipoint Flux Approximations for Quadrilateral Grids , 2002 .

[50]  J. Oliver MODELLING STRONG DISCONTINUITIES IN SOLID MECHANICS VIA STRAIN SOFTENING CONSTITUTIVE EQUATIONS. PART 1: FUNDAMENTALS , 1996 .

[51]  Eirik Keilegavlen,et al.  Finite volume discretization for poroelastic media with fractures modeled by contact mechanics , 2019, International Journal for Numerical Methods in Engineering.

[52]  Peter Wriggers,et al.  Isogeometric contact: a review , 2014 .