Whole exome sequencing identifies novel germline variants of SLC15A4 gene as potentially cancer predisposing in familial colorectal cancer

[1]  Sri V. V. Deevi,et al.  Rare variant contribution to human disease in 281,104 UK Biobank exomes , 2021, Nature.

[2]  K. Hemminki,et al.  Whole Genome Sequencing Prioritizes CHEK2, EWSR1, and TIAM1 as Possible Predisposition Genes for Familial Non-Medullary Thyroid Cancer , 2021, Frontiers in Endocrinology.

[3]  M. Schlesner,et al.  Whole Exome Sequencing Identifies APCDD1 and HDAC5 Genes as Potentially Cancer Predisposing in Familial Colorectal Cancer , 2021, International journal of molecular sciences.

[4]  Silvio C. E. Tosatto,et al.  The InterPro protein families and domains database: 20 years on , 2020, Nucleic Acids Res..

[5]  Ivana V. Yang,et al.  Dynamic incorporation of multiple in silico functional annotations empowers rare variant association analysis of large whole genome sequencing studies at scale , 2020, Nature Genetics.

[6]  Abhishek Kumar,et al.  A Germline Mutation in the POT1 Gene Is a Candidate for Familial Non-Medullary Thyroid Cancer , 2020, Cancers.

[7]  K. Hemminki,et al.  Identification of Familial Hodgkin Lymphoma Predisposing Genes Using Whole Genome Sequencing , 2019, Frontiers in Bioengineering and Biotechnology.

[8]  V. Fellman,et al.  A sensitive assay for dNTPs based on long synthetic oligonucleotides, EvaGreen dye and inhibitor-resistant high-fidelity DNA polymerase , 2019, bioRxiv.

[9]  Phillip A. Richmond,et al.  JASPAR 2020: update of the open-access database of transcription factor binding profiles , 2019, Nucleic Acids Res..

[10]  K. Hemminki,et al.  Update on genetic predisposition to colorectal cancer and polyposis. , 2019, Molecular aspects of medicine.

[11]  K. Hemminki,et al.  Whole Genome Sequencing of Familial Non-Medullary Thyroid Cancer Identifies Germline Alterations in MAPK/ERK and PI3K/AKT Signaling Pathways , 2019, Biomolecules.

[12]  Brian E. Cade,et al.  Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program , 2019, Nature.

[13]  Ryan L. Collins,et al.  Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes , 2019, bioRxiv.

[14]  Gregory M. Cooper,et al.  CADD: predicting the deleteriousness of variants throughout the human genome , 2018, Nucleic Acids Res..

[15]  R. Eils,et al.  Familial Cancer Variant Prioritization Pipeline version 2 (FCVPPv2) applied to a papillary thyroid cancer family , 2018, Scientific Reports.

[16]  Abhishek Kumar,et al.  Whole genome sequencing reveals DICER1 as a candidate predisposing gene in familial Hodgkin lymphoma , 2018, International journal of cancer.

[17]  D. Buchanan,et al.  Update on Hereditary Colorectal Cancer: Improving the Clinical Utility of Multigene Panel Testing. , 2018, Clinical colorectal cancer.

[18]  Jianda Zhou,et al.  Screening for susceptibility genes in hereditary non-polyposis colorectal cancer. , 2018, Oncology letters.

[19]  T. Mohr,et al.  STAT1 is a sex‐specific tumor suppressor in colitis‐associated colorectal cancer , 2018, Molecular oncology.

[20]  Evan Bolton,et al.  Database resources of the National Center for Biotechnology Information , 2017, Nucleic Acids Res..

[21]  James T. Robinson,et al.  Variant Review with the Integrative Genomics Viewer. , 2017, Cancer research.

[22]  M. Lai,et al.  Deletions at SLC18A1 increased the risk of CRC and lower SLC18A1 expression associated with poor CRC outcome , 2017, Carcinogenesis.

[23]  R. Scott,et al.  Use of multigene‐panel identifies pathogenic variants in several CRC‐predisposing genes in patients previously tested for Lynch Syndrome , 2017, Clinical genetics.

[24]  C. Lindskog,et al.  A pathology atlas of the human cancer transcriptome , 2017, Science.

[25]  M. Bisgaard,et al.  Familial Colorectal Cancer Type X , 2017, Current genomics.

[26]  Chi-Jung Huang,et al.  Discovery of genes from feces correlated with colorectal cancer progression. , 2016, Oncology letters.

[27]  Z. Zhai,et al.  Association Study Between SLC15A4 Polymorphisms and Haplotypes and Systemic Lupus Erythematosus in a Han Chinese Population , 2016, Genetic testing and molecular biomarkers.

[28]  H. Clevers,et al.  RNF43 germline and somatic mutation in serrated neoplasia pathway and its association with BRAF mutation , 2016, Gut.

[29]  Tsippi Iny Stein,et al.  The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses , 2016, Current protocols in bioinformatics.

[30]  Aung Ko Win,et al.  Determining the familial risk distribution of colorectal cancer: a data mining approach , 2016, Familial Cancer.

[31]  E. Boerwinkle,et al.  dbNSFP v3.0: A One‐Stop Database of Functional Predictions and Annotations for Human Nonsynonymous and Splice‐Site SNVs , 2016, Human mutation.

[32]  Bin Zhang,et al.  SEA: a super-enhancer archive , 2015, Nucleic Acids Res..

[33]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[34]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[35]  R. Kuiper,et al.  NTHL1 defines novel cancer syndrome , 2015, Oncotarget.

[36]  A. Valencia,et al.  Germline Mutations in FAN1 Cause Hereditary Colorectal Cancer by Impairing DNA Repair. , 2015, Gastroenterology.

[37]  K. Hemminki,et al.  Population Landscape of Familial Cancer , 2015, Scientific Reports.

[38]  B. Rost,et al.  Better prediction of functional effects for sequence variants , 2015, BMC Genomics.

[39]  J. Shendure,et al.  A germline homozygous mutation in the base-excision repair gene NTHL1 causes adenomatous polyposis and colorectal cancer , 2015, Nature Genetics.

[40]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[41]  Derek W Wright,et al.  Gateways to the FANTOM5 promoter level mammalian expression atlas , 2015, Genome Biology.

[42]  S. Yokoyama,et al.  The histidine transporter SLC15A4 coordinates mTOR-dependent inflammatory responses and pathogenic antibody production. , 2014, Immunity.

[43]  S. Scherer,et al.  Germline Mutation of RPS20, Encoding a Ribosomal Protein, Causes Predisposition to Hereditary Nonpolyposis Colorectal Carcinoma Without DNA Mismatch Repair Deficiency , 2014, Gastroenterology.

[44]  G. McVean,et al.  Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications , 2014, Nature Genetics.

[45]  J. Shendure,et al.  A general framework for estimating the relative pathogenicity of human genetic variants , 2014, Nature Genetics.

[46]  L. Le,et al.  Germline mutations in oncogene-induced senescence pathways are associated with multiple sessile serrated adenomas. , 2014, Gastroenterology.

[47]  Joshua M. Stuart,et al.  The Cancer Genome Atlas Pan-Cancer analysis project , 2013, Nature Genetics.

[48]  D. Goldstein,et al.  Genic Intolerance to Functional Variation and the Interpretation of Personal Genomes , 2013, PLoS genetics.

[49]  R. Moriggl,et al.  Both STAT1 and STAT3 are favourable prognostic determinants in colorectal carcinoma , 2013, British Journal of Cancer.

[50]  H. Shin,et al.  Ethnic specificity of lupus-associated loci identified in a genome-wide association study in Korean women , 2013, Annals of the rheumatic diseases.

[51]  Peter Donnelly,et al.  Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas , 2013, Nature Genetics.

[52]  Ian Tomlinson,et al.  Germline and somatic polymerase ε and δ mutations define a new class of hypermutated colorectal and endometrial cancers , 2013, The Journal of pathology.

[53]  Benjamin E. Gross,et al.  Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal , 2013, Science Signaling.

[54]  Peter Donnelly,et al.  Germline mutations in the proof-reading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas , 2012, Nature Genetics.

[55]  J. Kere,et al.  Genes identified in Asian SLE GWASs are also associated with SLE in Caucasian populations , 2012, European Journal of Human Genetics.

[56]  William Stafford Noble,et al.  Unsupervised pattern discovery in human chromatin structure through genomic segmentation , 2012, Nature Methods.

[57]  Manolis Kellis,et al.  ChromHMM: automating chromatin-state discovery and characterization , 2012, Nature Methods.

[58]  Heng Li,et al.  A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data , 2011, Bioinform..

[59]  S. Itzkowitz,et al.  Intestinal inflammation and cancer. , 2011, Gastroenterology.

[60]  N. Kato,et al.  The solute carrier family 15A4 regulates TLR9 and NOD1 functions in the innate immune system and promotes colitis in mice. , 2011, Gastroenterology.

[61]  L. Alfredsson,et al.  Variants of gene for microsomal prostaglandin E2 synthase show association with disease and severe inflammation in rheumatoid arthritis , 2011, European Journal of Human Genetics.

[62]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[63]  M. Ilyas,et al.  Intratumoral T cell infiltration, MHC class I and STAT1 as biomarkers of good prognosis in colorectal cancer , 2010, Gut.

[64]  T. Tuohy,et al.  Hereditary and familial colon cancer. , 2010, Gastroenterology.

[65]  D. Philpott,et al.  pH-dependent Internalization of Muramyl Peptides from Early Endosomes Enables Nod1 and Nod2 Signaling* , 2009, The Journal of Biological Chemistry.

[66]  S. Spechler,et al.  Carcinogenesis in IBD: potential targets for the prevention of colorectal cancer , 2009, Nature Reviews Gastroenterology &Hepatology.

[67]  N. Warner,et al.  Function of Nod‐like receptors in microbial recognition and host defense , 2009, Immunological reviews.

[68]  Rodney J Scott,et al.  Inflammatory response gene polymorphisms and their relationship with colorectal cancer risk , 2008, BMC Cancer.

[69]  T. Smyrk,et al.  Tumor Necrosis Factor-Alpha Polymorphisms in Ulcerative Colitis-Associated Colorectal Cancer , 2008, The American Journal of Gastroenterology.

[70]  Richa Agarwala,et al.  COBALT: constraint-based alignment tool for multiple protein sequences , 2007, Bioinform..

[71]  C. Caruso,et al.  Regulatory Cytokine Gene Polymorphisms and Risk of Colorectal Carcinoma , 2006, Annals of the New York Academy of Sciences.

[72]  G. Knipp,et al.  The functional evaluation of human peptide/histidine transporter 1 (hPHT1) in transiently transfected COS-7 cells. , 2006, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[73]  D. Haussler,et al.  Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. , 2005, Genome research.

[74]  S. Batzoglou,et al.  Distribution and intensity of constraint in mammalian genomic sequence. , 2005, Genome research.

[75]  Y. Fukuda,et al.  Microsomal prostaglandin E synthase (mPGES)-1, mPGES-2 and cytosolic PGES expression in human gastritis and gastric ulcer tissue , 2005, Laboratory Investigation.

[76]  Sankar Ghosh,et al.  Signaling to NF-kappaB. , 2004, Genes & development.

[77]  J. Kaprio,et al.  Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. , 2000, The New England journal of medicine.

[78]  T. Yamashita,et al.  Cloning and Functional Expression of a Brain Peptide/Histidine Transporter* , 1997, The Journal of Biological Chemistry.

[79]  D. Lahiri,et al.  DNA isolation by a rapid method from human blood samples: Effects of MgCl2, EDTA, storage time, and temperature on DNA yield and quality , 1993, Biochemical Genetics.

[80]  L. Roncucci,et al.  Familial aggregation of tumors in the three-year experience of a population-based colorectal cancer registry. , 1989, Cancer research.

[81]  K. Hemminki,et al.  Whole Genome Sequencing of Familial Non-Medullary Thyroid Cancer Identifies Germline Alterations in MAPK/ERK and PI3K/AKT Signaling Pathways , 2019, Biomolecules.

[82]  Mark Daly,et al.  Principles and methods of in-silico prioritization of non-coding regulatory variants , 2017, Human Genetics.

[83]  Liangdan Sun,et al.  Variants in TNFSF4, TNFAIP3, TNIP1, BLK, SLC15A4 and UBE2L3 interact to confer risk of systemic lupus erythematosus in Chinese population , 2013, Rheumatology International.

[84]  K. Pollard,et al.  Detection of nonneutral substitution rates on mammalian phylogenies. , 2010, Genome research.

[85]  K. Hemminki,et al.  How common is familial cancer? , 2008, Annals of oncology : official journal of the European Society for Medical Oncology.

[86]  L. Klampfer The role of signal transducers and activators of transcription in colon cancer. , 2008, Frontiers in bioscience : a journal and virtual library.

[87]  Elizabeth M. Smigielski,et al.  dbSNP: a database of single nucleotide polymorphisms , 2000, Nucleic Acids Res..