Three-Dimensional Architectures Constructed from Transition-Metal Dichalcogenide Nanomaterials for Electrochemical Energy Storage and Conversion.

Transition-metal dichalcogenides (TMDs) have attracted considerable attention in recent years because of their unique properties and promising applications in electrochemical energy storage and conversion. However, the limited number of active sites as well as blocked ion and mass transport severely impair their electrochemical performance. The construction of three-dimensional (3D) architectures from TMD nanomaterials has been proven to be an effective strategy to solve the aforementioned problems as a result of their large specific surface areas and short ion and mass transport distances. This Review summarizes the commonly used routes to build 3D TMD architectures and highlights their applications in electrochemical energy storage and conversion, including batteries, supercapacitors, and electrocatalytic hydrogen evolution. The challenges and outlook in this research area are also discussed.

[1]  Haihui Wang,et al.  A 3D Hybrid of Chemically Coupled Nickel Sulfide and Hollow Carbon Spheres for High Performance Lithium–Sulfur Batteries , 2017 .

[2]  Hua Zhang,et al.  Ultrathin Two‐Dimensional Multinary Layered Metal Chalcogenide Nanomaterials , 2017, Advanced materials.

[3]  Bo Chen,et al.  Preparation of Ultrathin Two-Dimensional Tix Ta1-x Sy Oz Nanosheets as Highly Efficient Photothermal Agents. , 2017, Angewandte Chemie.

[4]  Xinran Wang,et al.  Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics , 2017 .

[5]  J. Goodenough,et al.  Tungsten Disulfide Catalysts Supported on a Carbon Cloth Interlayer for High Performance Li–S Battery , 2017 .

[6]  Jinghong Li,et al.  Hierarchical Structures Based on Two‐Dimensional Nanomaterials for Rechargeable Lithium Batteries , 2017 .

[7]  Jia Liu,et al.  The mechanism of hydrogen adsorption on transition metal dichalcogenides as hydrogen evolution reaction catalyst. , 2017, Physical chemistry chemical physics : PCCP.

[8]  K. Novoselov,et al.  Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production , 2017, Nature Communications.

[9]  X. Lou,et al.  Complex Hollow Nanostructures: Synthesis and Energy‐Related Applications , 2017, Advanced materials.

[10]  Qiyuan He,et al.  Recent Advances in Ultrathin Two-Dimensional Nanomaterials. , 2017, Chemical reviews.

[11]  Ming Liu,et al.  Recent innovative configurations in high-energy lithium–sulfur batteries , 2017 .

[12]  Shouzhi Wang,et al.  Three-Dimensional MoS2 @CNT/RGO Network Composites for High-Performance Flexible Supercapacitors. , 2017, Chemistry.

[13]  S. Qiao,et al.  Advent of 2D Rhenium Disulfide (ReS2): Fundamentals to Applications , 2017 .

[14]  S. Qiao,et al.  Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes. , 2017, Accounts of chemical research.

[15]  Xin Lu,et al.  One-Step Hydrothermal Fabrication of Three-dimensional MoS2 Nanoflower using Polypyrrole as Template for Efficient Hydrogen Evolution Reaction , 2017, Scientific Reports.

[16]  Zhong Jin,et al.  MoS2‐Based All‐Purpose Fibrous Electrode and Self‐Powering Energy Fiber for Efficient Energy Harvesting and Storage , 2017 .

[17]  Chaoyi Yan,et al.  Multi‐Functional Layered WS2 Nanosheets for Enhancing the Performance of Lithium–Sulfur Batteries , 2017 .

[18]  X. Lou,et al.  Self-Templated Formation of Hollow Structures for Electrochemical Energy Applications. , 2017, Accounts of chemical research.

[19]  Mark D. Symes,et al.  Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting , 2017 .

[20]  Huan Pang,et al.  MoS2‐Based Nanocomposites for Electrochemical Energy Storage , 2016, Advanced science.

[21]  Steven D. Lacey,et al.  Tuning two-dimensional nanomaterials by intercalation: materials, properties and applications. , 2016, Chemical Society reviews.

[22]  W. Cao,et al.  Vertical 2D MoO2/MoSe2 Core–Shell Nanosheet Arrays as High‐Performance Electrocatalysts for Hydrogen Evolution Reaction , 2016 .

[23]  Zhigang Lei,et al.  MoS2 with tunable surface structure directed by thiophene adsorption toward HDS and HER , 2016, Science China Materials.

[24]  Hao-Chung Kuo,et al.  Wafer Scale Phase‐Engineered 1T‐ and 2H‐MoSe2/Mo Core–Shell 3D‐Hierarchical Nanostructures toward Efficient Electrocatalytic Hydrogen Evolution Reaction , 2016, Advanced materials.

[25]  Han Yang,et al.  Ice Templated Free‐Standing Hierarchically WS2/CNT‐rGO Aerogel for High‐Performance Rechargeable Lithium and Sodium Ion Batteries , 2016 .

[26]  Yeonwoong Jung,et al.  High-Performance One-Body Core/Shell Nanowire Supercapacitor Enabled by Conformal Growth of Capacitive 2D WS2 Layers. , 2016, ACS nano.

[27]  Yi Cui,et al.  Designing high-energy lithium-sulfur batteries. , 2016, Chemical Society reviews.

[28]  Haegyeom Kim,et al.  Recent Progress in Electrode Materials for Sodium‐Ion Batteries , 2016 .

[29]  Yeryung Jeon,et al.  Formation of Ni–Co–MoS2 Nanoboxes with Enhanced Electrocatalytic Activity for Hydrogen Evolution , 2016, Advanced materials.

[30]  Y. Jiao,et al.  Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene , 2016, Nature Energy.

[31]  Tianyu Tang,et al.  Nanostructured Anode Materials for Lithium Ion Batteries: Progress, Challenge and Perspective , 2016 .

[32]  Zhongfan Liu,et al.  Recent Advances in Controlling Syntheses and Energy Related Applications of MX2 and MX2/Graphene Heterostructures , 2016 .

[33]  Xiao Zhang,et al.  Solution‐Processed Two‐Dimensional Metal Dichalcogenide‐Based Nanomaterials for Energy Storage and Conversion , 2016, Advanced materials.

[34]  Y. Gogotsi,et al.  Synthesis of Two‐Dimensional Materials for Capacitive Energy Storage , 2016, Advanced materials.

[35]  Jieun Yang,et al.  Recent Strategies for Improving the Catalytic Activity of 2D TMD Nanosheets Toward the Hydrogen Evolution Reaction , 2016, Advanced materials.

[36]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[37]  Hua Zhang,et al.  Solution-Processed Two-Dimensional MoS2 Nanosheets: Preparation, Hybridization, and Applications. , 2016, Angewandte Chemie.

[38]  Xiao Zhang,et al.  Lösungsprozessierte MoS2-Nanoplättchen: Herstellung, Hybridisierung und Anwendungen , 2016 .

[39]  X. Lou,et al.  Hierarchical MoS2 tubular structures internally wired by carbon nanotubes as a highly stable anode material for lithium-ion batteries , 2016, Science Advances.

[40]  X. Lou,et al.  Synthesis of Highly Uniform Molybdenum-Glycerate Spheres and Their Conversion into Hierarchical MoS2 Hollow Nanospheres for Lithium-Ion Batteries. , 2016, Angewandte Chemie.

[41]  Xi‐Wen Du,et al.  Strongly Coupled Nafion Molecules and Ordered Porous CdS Networks for Enhanced Visible‐Light Photoelectrochemical Hydrogen Evolution , 2016, Advanced materials.

[42]  C. V. Singh,et al.  Vertically Oriented Arrays of ReS2 Nanosheets for Electrochemical Energy Storage and Electrocatalysis. , 2016, Nano letters.

[43]  Feng Wu,et al.  Advanced High Energy Density Secondary Batteries with Multi‐Electron Reaction Materials , 2016, Advanced science.

[44]  Li Zhang,et al.  Photo-Promoted Platinum Nanoparticles Decorated MoS2@Graphene Woven Fabric Catalyst for Efficient Hydrogen Generation. , 2016, ACS applied materials & interfaces.

[45]  Gong Zhang,et al.  Two-dimensional layered MoS2: rational design, properties and electrochemical applications , 2016 .

[46]  B. Lu,et al.  3D ternary nanocomposites of molybdenum disulfide/polyaniline/reduced graphene oxide aerogel for high performance supercapacitors , 2016 .

[47]  R. Mendes,et al.  Extremely Weak van der Waals Coupling in Vertical ReS2 Nanowalls for High‐Current‐Density Lithium‐Ion Batteries , 2016, Advanced materials.

[48]  Doron Aurbach,et al.  Promise and reality of post-lithium-ion batteries with high energy densities , 2016 .

[49]  Han Yang,et al.  MoS2 coated hollow carbon spheres for anodes of lithium ion batteries , 2016 .

[50]  Shaojun Guo,et al.  MoS2 Nanosheet Assembling Superstructure with a Three-Dimensional Ion Accessible Site: A New Class of Bifunctional Materials for Batteries and Electrocatalysis , 2016 .

[51]  Bo Chen,et al.  2D Transition‐Metal‐Dichalcogenide‐Nanosheet‐Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions , 2016, Advanced materials.

[52]  Y. Gogotsi,et al.  MoS2 Nanosheets Vertically Aligned on Carbon Paper: A Freestanding Electrode for Highly Reversible Sodium‐Ion Batteries , 2016 .

[53]  Bo Chen,et al.  Preparation of Single-Layer MoS(2x)Se2(1-x) and Mo(x)W(1-x)S2 Nanosheets with High-Concentration Metallic 1T Phase. , 2016, Small.

[54]  Y. Kang,et al.  Fullerene-like MoSe2 nanoparticles-embedded CNT balls with excellent structural stability for highly reversible sodium-ion storage. , 2016, Nanoscale.

[55]  Jilei Liu,et al.  MoS2 nanosheets decorated Ni3S2@MoS2 coaxial nanofibers: Constructing an ideal heterostructure for enhanced Na-ion storage , 2016 .

[56]  X. Lou,et al.  Metal Sulfide Hollow Nanostructures for Electrochemical Energy Storage , 2016 .

[57]  Jun Chen,et al.  Facile Spraying Synthesis and High‐Performance Sodium Storage of Mesoporous MoS2/C Microspheres , 2016 .

[58]  H. Zeng,et al.  Monolayer MoS2-Graphene Hybrid Aerogels with Controllable Porosity for Lithium-Ion Batteries with High Reversible Capacity. , 2016, ACS applied materials & interfaces.

[59]  W. Luo,et al.  Na-Ion Battery Anodes: Materials and Electrochemistry. , 2016, Accounts of chemical research.

[60]  Ziqiang Zhu,et al.  Preparation of hollow microsphere@onion-like solid nanosphere MoS2 coated by a carbon shell as a stable anode for optimized lithium storage. , 2016, Nanoscale.

[61]  Zhe Yan,et al.  Three-Dimensional Tubular MoS2/PANI Hybrid Electrode for High Rate Performance Supercapacitor. , 2015, ACS applied materials & interfaces.

[62]  Jun He,et al.  Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting. , 2015, Nanoscale.

[63]  Yee-Hsien Ho,et al.  Directly deposited MoS2 thin film electrodes for high performance supercapacitors , 2015 .

[64]  Shun Mao,et al.  Metallic CoS2 nanowire electrodes for high cycling performance supercapacitors , 2015, Nanotechnology.

[65]  Z. Wen,et al.  Constructing Highly Oriented Configuration by Few-Layer MoS2: Toward High-Performance Lithium-Ion Batteries and Hydrogen Evolution Reactions. , 2015, ACS nano.

[66]  J. Goodenough Energy storage materials: A perspective , 2015 .

[67]  Y. Kang,et al.  Synergetic Effect of Yolk-Shell Structure and Uniform Mixing of SnS-MoS₂ Nanocrystals for Improved Na-Ion Storage Capabilities. , 2015, ACS applied materials & interfaces.

[68]  Q. Ma,et al.  A Se-doped MoS2 nanosheet for improved hydrogen evolution reaction. , 2015, Chemical communications.

[69]  Yan Yu,et al.  Engineering nanostructured electrode materials for high performance sodium ion batteries: a case study of a 3D porous interconnected WS2/C nanocomposite , 2015 .

[70]  Xun Wang,et al.  Nanosheet-assembled MoSe2 and S-doped MoSe2−x nanostructures for superior lithium storage properties and hydrogen evolution reactions , 2015 .

[71]  Hua Zhang Ultrathin Two-Dimensional Nanomaterials. , 2015, ACS nano.

[72]  E. Uchaker,et al.  Beyond Li-ion: electrode materials for sodium- and magnesium-ion batteries , 2015, Science China Materials.

[73]  Marco-Tulio F. Rodrigues,et al.  3D Nanostructured Molybdenum Diselenide/Graphene Foam as Anodes for Long-Cycle Life Lithium-ion Batteries , 2015 .

[74]  Hua Zhang,et al.  Multifunctional Architectures Constructing of PANI Nanoneedle Arrays on MoS2 Thin Nanosheets for High-Energy Supercapacitors. , 2015, Small.

[75]  Hua Zhang,et al.  Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: A flexible electrode for efficient hydrogen generation in neutral electrolyte , 2015, Science Advances.

[76]  Fugen Sun,et al.  Melamine-assisted one-pot synthesis of hierarchical nitrogen-doped carbon@MoS₂ nanowalled core-shell microspheres and their enhanced Li-storage performances. , 2015, Nanoscale.

[77]  Xiaoxin Zou,et al.  Noble metal-free hydrogen evolution catalysts for water splitting. , 2015, Chemical Society reviews.

[78]  Chenguo Hu,et al.  High performance solid state flexible supercapacitor based on molybdenum sulfide hierarchical nanospheres , 2015 .

[79]  G. Andersson,et al.  3D WS2 Nanolayers@Heteroatom‐Doped Graphene Films as Hydrogen Evolution Catalyst Electrodes , 2015, Advanced materials.

[80]  X. Lou,et al.  Ultrathin MoS₂ Nanosheets Supported on N-doped Carbon Nanoboxes with Enhanced Lithium Storage and Electrocatalytic Properties. , 2015, Angewandte Chemie.

[81]  L. Mai,et al.  Three-Dimensional Crumpled Reduced Graphene Oxide/MoS2 Nanoflowers: A Stable Anode for Lithium-Ion Batteries. , 2015, ACS applied materials & interfaces.

[82]  Wei Lv,et al.  Towards superior volumetric performance: design and preparation of novel carbon materials for energy storage , 2015 .

[83]  Jiao Deng,et al.  Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping , 2015 .

[84]  M. Chhowalla,et al.  Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. , 2015, Nature nanotechnology.

[85]  Lain-Jong Li,et al.  Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. , 2015, Chemical Society reviews.

[86]  Hua Zhang,et al.  Two-dimensional transition metal dichalcogenide nanosheet-based composites. , 2015, Chemical Society reviews.

[87]  Zhiyi Lu,et al.  Nanoarray based “superaerophobic” surfaces for gas evolution reaction electrodes , 2015 .

[88]  T. Baumann,et al.  Ultralow Density, Monolithic WS2, MoS2, and MoS2/Graphene Aerogels. , 2015, ACS nano.

[89]  Yao Zheng,et al.  Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. , 2015, Chemical Society reviews.

[90]  Peng Chen,et al.  Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi-walled carbon nanotubes for solid-state, flexible, asymmetric supercapacitors. , 2015, Angewandte Chemie.

[91]  Yunhui Huang,et al.  Flexible Membranes of MoS2/C Nanofibers by Electrospinning as Binder-Free Anodes for High-Performance Sodium-Ion Batteries , 2015, Scientific Reports.

[92]  Linda F Nazar,et al.  The emerging chemistry of sodium ion batteries for electrochemical energy storage. , 2015, Angewandte Chemie.

[93]  Dipan Kundu,et al.  Natriumionenbatterien für die elektrochemische Energiespeicherung , 2015 .

[94]  Yan Yao,et al.  Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage. , 2015, Nano letters.

[95]  Jung-Kul Lee,et al.  3D MoS2–Graphene Microspheres Consisting of Multiple Nanospheres with Superior Sodium Ion Storage Properties , 2015 .

[96]  Y. Kang,et al.  Sodium ion storage properties of WS₂-decorated three-dimensional reduced graphene oxide microspheres. , 2015, Nanoscale.

[97]  Yan Yu,et al.  Fast Li Storage in MoS2‐Graphene‐Carbon Nanotube Nanocomposites: Advantageous Functional Integration of 0D, 1D, and 2D Nanostructures , 2015 .

[98]  Haotian Wang,et al.  Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution , 2015, Nano Research.

[99]  Ruitao Lv,et al.  Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. , 2015, Accounts of chemical research.

[100]  B. Guo,et al.  Design of two-dimensional, ultrathin MoS₂ nanoplates fabricated within one-dimensional carbon nanofibers with thermosensitive morphology: high-performance electrocatalysts for the hydrogen evolution reaction. , 2014, ACS applied materials & interfaces.

[101]  Q. Qu,et al.  Core-shell structure of hierarchical quasi-hollow MoS2 microspheres encapsulated porous carbon as stable anode for Li-ion batteries. , 2014, Small.

[102]  H. Fei,et al.  Edge‐Oriented MoS2 Nanoporous Films as Flexible Electrodes for Hydrogen Evolution Reactions and Supercapacitor Devices , 2014, Advanced materials.

[103]  X. Lou,et al.  A Nanosheets‐on‐Channel Architecture Constructed from MoS2 and CMK‐3 for High‐Capacity and Long‐Cycle‐Life Lithium Storage , 2014 .

[104]  Akihiko Hirata,et al.  Monolayer MoS2 Films Supported by 3D Nanoporous Metals for High‐Efficiency Electrocatalytic Hydrogen Production , 2014, Advanced materials.

[105]  S. Ramakrishna,et al.  Cobalt sulfide nanosheet/graphene/carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution. , 2014, Angewandte Chemie.

[106]  Juqing Liu,et al.  Fabrication of ultralong hybrid microfibers from nanosheets of reduced graphene oxide and transition-metal dichalcogenides and their application as supercapacitors. , 2014, Angewandte Chemie.

[107]  Kai Zhou,et al.  Three-dimensional hierarchical frameworks based on MoS₂ nanosheets self-assembled on graphene oxide for efficient electrocatalytic hydrogen evolution. , 2014, ACS applied materials & interfaces.

[108]  Jilei Liu,et al.  Self‐Assembly of Honeycomb‐like MoS2 Nanoarchitectures Anchored into Graphene Foam for Enhanced Lithium‐Ion Storage , 2014, Advanced materials.

[109]  Sen Xin,et al.  Carbon nanofibers decorated with molybdenum disulfide nanosheets: synergistic lithium storage and enhanced electrochemical performance. , 2014, Angewandte Chemie.

[110]  Jiaxing Huang,et al.  Molybdenum Sulfide Supported on Crumpled Graphene Balls for Electrocatalytic Hydrogen Production , 2014 .

[111]  Matthew Brozak,et al.  Three‐Dimensional Structures of MoS2 Nanosheets with Ultrahigh Hydrogen Evolution Reaction in Water Reduction , 2014 .

[112]  Jung Ho Yu,et al.  Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes , 2014, Nature Communications.

[113]  Bin Wang,et al.  Rational design of MoS2@graphene nanocables: towards high performance electrode materials for lithium ion batteries , 2014 .

[114]  X. Lou,et al.  Hierarchical MoS2 microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting , 2014 .

[115]  Ji-Won Jung,et al.  Vine-like MoS2 anode materials self-assembled from 1-D nanofibers for high capacity sodium rechargeable batteries. , 2014, Nanoscale.

[116]  Juanjuan Ding,et al.  High supercapacitor and adsorption behaviors of flower-like MoS2 nanostructures , 2014 .

[117]  S. B. Park,et al.  Hierarchical MoSe₂ yolk-shell microspheres with superior Na-ion storage properties. , 2014, Nanoscale.

[118]  Li-Dong Hu,et al.  Fabrication of 3D hierarchical MoS₂/polyaniline and MoS₂/C architectures for lithium-ion battery applications. , 2014, ACS applied materials & interfaces.

[119]  Zhenxing Wang,et al.  Component-Controllable WS2(1–x)Se2x Nanotubes for Efficient Hydrogen Evolution Reaction , 2014 .

[120]  Hongsen Li,et al.  Enhanced Lithium‐Storage Performance from Three‐Dimensional MoS2 Nanosheets/Carbon Nanotube Paper , 2014 .

[121]  Weiqi Wang,et al.  Homogeneously assembling like-charged WS2 and GO nanosheets lamellar composite films by filtration for highly efficient lithium ion batteries , 2014 .

[122]  Yi Xie,et al.  Semimetallic molybdenum disulfide ultrathin nanosheets as an efficient electrocatalyst for hydrogen evolution. , 2014, Nanoscale.

[123]  Shuang Yuan,et al.  Advances and challenges for flexible energy storage and conversion devices and systems , 2014 .

[124]  Song Jin,et al.  High-performance electrocatalysis using metallic cobalt pyrite (CoS₂) micro- and nanostructures. , 2014, Journal of the American Chemical Society.

[125]  Charlie Tsai,et al.  Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: a density functional study. , 2014, Physical chemistry chemical physics : PCCP.

[126]  R. Hamers,et al.  Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2. , 2014, Journal of the American Chemical Society.

[127]  Z. Yin,et al.  MoS2 nanoflower-decorated reduced graphene oxide paper for high-performance hydrogen evolution reaction. , 2014, Nanoscale.

[128]  Quan-hong Yang,et al.  Reduction of Graphene Oxide by Hydrogen Sulfide: A Promising Strategy for Pollutant Control and as an Electrode for Li‐S Batteries , 2014 .

[129]  Hao Wang,et al.  Ultrahigh Hydrogen Evolution Performance of Under‐Water “Superaerophobic” MoS2 Nanostructured Electrodes , 2014, Advanced materials.

[130]  Xin Wang,et al.  Recent Development of Molybdenum Sulfides as Advanced Electrocatalysts for Hydrogen Evolution Reaction , 2014 .

[131]  Yi Cui,et al.  Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution. , 2014, ACS nano.

[132]  S. B. Park,et al.  Superior electrochemical properties of MoS2 powders with a MoS2@void@MoS2 configuration. , 2014, Nanoscale.

[133]  Di Hu,et al.  Ideal Three‐Dimensional Electrode Structures for Electrochemical Energy Storage , 2014, Advanced materials.

[134]  Guangmin Zhou,et al.  Progress in flexible lithium batteries and future prospects , 2014 .

[135]  Yan Yu,et al.  Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. , 2014, Angewandte Chemie.

[136]  Hongyu Sun,et al.  Three‐Dimensional Assembly of Single‐Layered MoS2 , 2014, Advanced materials.

[137]  A. W. Maijenburg,et al.  MoS₂ nanocube structures as catalysts for electrochemical H₂ evolution from acidic aqueous solutions. , 2014, ACS applied materials & interfaces.

[138]  Gurpreet Singh,et al.  MoS2/graphene composite paper for sodium-ion battery electrodes. , 2014, ACS nano.

[139]  Li-Jun Wan,et al.  Lithium-sulfur batteries: electrochemistry, materials, and prospects. , 2013, Angewandte Chemie.

[140]  Yadong Yin,et al.  Lithium‐Schwefel‐Batterien: Elektrochemie, Materialien und Perspektiven , 2013 .

[141]  G. Eda,et al.  Conducting MoS₂ nanosheets as catalysts for hydrogen evolution reaction. , 2013, Nano letters.

[142]  B. Pan,et al.  Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. , 2013, Journal of the American Chemical Society.

[143]  Haotian Wang,et al.  Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction , 2013, Proceedings of the National Academy of Sciences.

[144]  Wenhui Shi,et al.  Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in lithium-ion batteries. , 2013, Small.

[145]  Xu-Ming Xie,et al.  Flexible and robust MoS2-graphene hybrid paper cross-linked by a polymer ligand: a high-performance anode material for thin film lithium-ion batteries. , 2013, Chemical communications.

[146]  Qiao Chen,et al.  Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers. , 2013, Physical chemistry chemical physics : PCCP.

[147]  X. Lou,et al.  Defect‐Rich MoS2 Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution , 2013, Advanced materials.

[148]  Bin Liu,et al.  Rechargeable Mg-ion batteries based on WSe2 nanowire cathodes. , 2013, ACS nano.

[149]  Doron Aurbach,et al.  Mg rechargeable batteries: an on-going challenge , 2013 .

[150]  Fei Meng,et al.  Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. , 2013, Journal of the American Chemical Society.

[151]  Zhiyuan Zeng,et al.  One-step synthesis of Ni3S2 nanorod@Ni(OH)2nanosheet core–shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors , 2013 .

[152]  J. Coleman,et al.  Development of MoS2–CNT Composite Thin Film from Layered MoS2 for Lithium Batteries , 2013 .

[153]  C. Ma,et al.  Three-dimensional hierarchical architectures constructed by graphene/MoS2 nanoflake arrays and their rapid charging/discharging properties as lithium-ion battery anodes. , 2013, Chemistry.

[154]  Young Jun Hong,et al.  One‐Pot Facile Synthesis of Double‐Shelled SnO2 Yolk‐Shell‐Structured Powders by Continuous Process as Anode Materials for Li‐ion Batteries , 2013, Advanced materials.

[155]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[156]  Guangyuan Zheng,et al.  Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. , 2013, Nano letters.

[157]  Desheng Kong,et al.  Synthesis of MoS2 and MoSe2 films with vertically aligned layers. , 2013, Nano letters.

[158]  Zhiyuan Zeng,et al.  Metal dichalcogenide nanosheets: preparation, properties and applications. , 2013, Chemical Society reviews.

[159]  Lain-Jong Li,et al.  Highly Efficient Electrocatalytic Hydrogen Production by MoSx Grown on Graphene‐Protected 3D Ni Foams , 2013, Advanced materials.

[160]  Jian Yang,et al.  Enhanced lithium storage performances of hierarchical hollow MoS₂ nanoparticles assembled from nanosheets. , 2013, ACS applied materials & interfaces.

[161]  Z. Yin,et al.  Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. , 2013, Small.

[162]  G. Eda,et al.  Enhanced catalytic activity in strained chemically exfoliated WS₂ nanosheets for hydrogen evolution. , 2012, Nature materials.

[163]  M. Dresselhaus,et al.  A facile route for 3D aerogels from nanostructured 1D and 2D materials , 2012, Scientific Reports.

[164]  Robert Kostecki,et al.  Nanomaterials for renewable energy production and storage. , 2012, Chemical Society reviews.

[165]  Jakob Kibsgaard,et al.  Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. , 2012, Nature materials.

[166]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[167]  Jian Jiang,et al.  Recent Advances in Metal Oxide‐based Electrode Architecture Design for Electrochemical Energy Storage , 2012, Advanced materials.

[168]  Peter G. Bruce,et al.  Lithiumbatterien und elektrische Doppelschichtkondensatoren: aktuelle Herausforderungen , 2012 .

[169]  Yang-Kook Sun,et al.  Challenges facing lithium batteries and electrical double-layer capacitors. , 2012, Angewandte Chemie.

[170]  Yu‐Guo Guo,et al.  Facile synthesis of MoS2@CMK-3 nanocomposite as an improved anode material for lithium-ion batteries. , 2012, Nanoscale.

[171]  Zhiyuan Zeng,et al.  An effective method for the fabrication of few-layer-thick inorganic nanosheets. , 2012, Angewandte Chemie.

[172]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[173]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[174]  X. Lou,et al.  Glucose-assisted growth of MoS2 nanosheets on CNT backbone for improved lithium storage properties. , 2011, Chemistry.

[175]  Zhiyuan Zeng,et al.  Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. , 2011, Angewandte Chemie.

[176]  Mercouri G. Kanatzidis,et al.  Compression and aggregation-resistant particles of crumpled soft sheets. , 2011, ACS nano.

[177]  Jinlong Yang,et al.  Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors. , 2011, Journal of the American Chemical Society.

[178]  Mustafa Lotya,et al.  Large‐Scale Exfoliation of Inorganic Layered Compounds in Aqueous Surfactant Solutions , 2011, Advanced materials.

[179]  Qiyuan He,et al.  Graphene-based materials: synthesis, characterization, properties, and applications. , 2011, Small.

[180]  H. Dai,et al.  Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. , 2011, Nano letters.

[181]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[182]  Hua Ma,et al.  Rechargeable Mg Batteries with Graphene‐like MoS2 Cathode and Ultrasmall Mg Nanoparticle Anode , 2011, Advanced materials.

[183]  Tammy Y. Olson,et al.  Synthesis of graphene aerogel with high electrical conductivity. , 2010, Journal of the American Chemical Society.

[184]  Jae-Hun Kim,et al.  Li-alloy based anode materials for Li secondary batteries. , 2010, Chemical Society reviews.

[185]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[186]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[187]  A. Mitelman,et al.  Progress in Rechargeable Magnesium Battery Technology , 2007 .

[188]  K. Loh,et al.  Electrochemical Double-Layer Capacitance of MoS[sub 2] Nanowall Films , 2007 .

[189]  S. Stankovich,et al.  Preparation and characterization of graphene oxide paper , 2007, Nature.

[190]  J. Nørskov,et al.  Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts , 2007 .

[191]  Thomas F. Jaramillo,et al.  Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts , 2007, Science.

[192]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[193]  Jacob Bonde,et al.  Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. , 2005, Journal of the American Chemical Society.

[194]  S. Brock,et al.  Porous Semiconductor Chalcogenide Aerogels , 2005, Science.

[195]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[196]  E. Levi,et al.  Prototype systems for rechargeable magnesium batteries , 2000, Nature.

[197]  Reshef Tenne,et al.  Optical-absorption spectra of inorganic fullerenelike MS 2 ÑM5Mo, WÖ , 1998 .

[198]  Larry L. Hench,et al.  The sol-gel process , 1990 .

[199]  H. Tributsch,et al.  Electrochemistry and photochemistry of MoS2 layer crystals. I , 1977 .

[200]  H. Tributsch Layer‐Type Transition Metal Dichalcogenides — a New Class of Electrodes for Electrochemical Solar Cells , 1977 .

[201]  J. Verble,et al.  Rigid-layer lattice vibrations and van der waals bonding in hexagonal MoS2 , 1972 .

[202]  F. Kang,et al.  Noble‐Metal‐Free Hybrid Membranes for Highly Efficient Hydrogen Evolution , 2017, Advanced materials.

[203]  Zhengzheng Xie,et al.  Bubble-template-assisted synthesis of hollow fullerene-like MoS2 nanocages as a lithium ion battery anode material , 2016 .

[204]  Bo Jin,et al.  Molybdenum sulfide clusters-nitrogen-doped graphene hybrid hydrogel film as an efficient three-dimensional hydrogen evolution electrocatalyst , 2015 .

[205]  P. Ajayan,et al.  A Bottom‐Up Approach to Build 3D Architectures from Nanosheets for Superior Lithium Storage , 2014 .

[206]  Brian C. Olsen,et al.  Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites , 2014 .

[207]  M. Moner-Girona,et al.  Sol-Gel Route to Direct Formation of Silica Aerogel Microparticles Using Supercritical Solvents , 2003 .