A simulation/optimization study to assess seawater intrusion management strategies for the Gaza Strip coastal aquifer (Palestine)

Seawater intrusion is one of the major threats to freshwater resources in coastal areas, often exacerbated by groundwater overexploitation. Mitigation measures are needed to properly manage aquifers, and to restore groundwater quality. This study integrates three computational tools into a unified framework to investigate seawater intrusion in coastal areas and to assess strategies for managing groundwater resources under natural and human-induced stresses. The three components are a three-dimensional hydrogeological model for density-dependent variably saturated flow and miscible salt transport, an automatic calibration procedure that uses state variable outputs from the model to estimate selected model parameters, and an optimization module that couples a genetic algorithm with the simulation model. The computational system is used to rank alternative strategies for mitigation of seawater intrusion, taking into account conflicting objectives and problem constraints. It is applied to the Gaza Strip (Palestine) coastal aquifer to identify a feasible groundwater management strategy for the period 2011–2020. The optimized solution is able to: (1) keep overall future abstraction from municipal groundwater wells close to the user-defined maximum level, (2) increase the average groundwater heads, and (3) lower both the total mass of salt extracted and the extent of the areas affected by seawater intrusion.RésuméL’intrusion d’eau de mer est une des principales menaces pour les ressources d’eau douce dans les zones côtières, souvent exacerbées par la surexploitation des eaux souterraines. Des mesures d’atténuation sont nécessaires pour gérer de manière adéquate les aquifères, et pour restaurer la qualité des eaux souterraines. Cette étude intègre trois outils informatiques dans un cadre unifié pour investiguer l’intrusion d’eau de mer dans les zones côtières et pour évaluer les stratégiques de gestion des ressources en eaux souterraines sous contraintes naturelles et anthropiques. Les trois composants sont une modèle tridimensionnel hydrogéologique considérant des écoulements variables et dépendants de la densité en milieu saturé et le transport de sel miscible, une procédure de calibration automatique qui utilise les sorties de variables d’état du modèle pour estimer les paramètres sélectionnés du modèle, et un module d’optimisation qui couple un algorithme génétique avec le modèle de simulation. Le système de calcul est utilisé pour classer des stratégies alternatives pour la réduction de l’intrusion marine, en tenant en compte des objectifs contradictoires et des contraintes du problème. Il est appliqué à l’aquifère côtier de la bande de Gaza (Palestine) pour identifier une stratégie de gestion des eaux souterraines pour la période 2011–2020. La solution optimisée est en mesure de: (1) maintenir le futur volume pompé pour l’ensemble des puits municipaux, proche du niveau maximal défini par l’utilisateur, (2) augmenter la charge hydraulique moyenne des eaux souterraines, et (3) diminuer à la fois la masse totale de sel extrait et l’étendue des zones concernées par l’intrusion d’eau marine.ResumenLa intrusión de agua de mar es una de las principales amenazas para los recursos de agua dulce en las área costeras, a menudo agravada por la sobreexplotación de agua subterránea. Las medidas de mitigación son necesarias para manejar adecuadamente los acuíferos, y para restaurar la calidad del agua subterránea. Este estudio integra tres herramientas computacionales en un esquema unificado para investigar la intrusión de agua de mar en áreas costeras y evaluar estrategias para el manejo de los recursos de agua subterránea bajo el estrés natural y el inducido por el hombre. Las tres componentes son un modelo hidrogeológico tridimensional para flujo variablemente saturado dependiente de la densidad y del transporte de sales miscibles, un procedimiento de calibración automática que usa salidas en estados variables a partir de un modelo para estimar los parámetros del modelo seleccionado, y un módulo de optimización que acopla un algoritmo genético con el mdoelo de simulación. Se usa el sistema computacional para clasificar las estrategias alternativas para la mitigación de la intrusión de agua de mar, teniendo en cuenta los objetivos en conflicto y las restricciones del problema. Se aplica al acuífero costero de Gaza Strip (Palestina) para identificar una estrategia factible para el manejo de agua subterránea en el período 2011–2020. La solución optimizada es capaz de: (1) mantener la extracción general futura a partir de los pozos municipales de agua subterránea cerca del nivel máximo definido por los usuarios, (2) incrementar las cargas promedio de agua subterránea, y (3) reducir tanto la masa total de la sal extraída como la extensión de las zonas afectadas por la intrusión de agua de mar.摘要海水入侵是沿海地区淡水资源的主要威胁之一,常常由于地下水超采而进一步恶化。需要采取缓解措施来科学管理含水层,恢复地下水质。这项研究使三个计算工具合成一个统一的框架,以调查沿海地区的海水入侵和评价自然和人为状况下地下水资源的管理策略。三个主要组分为一个密度制约的易变饱和水流和可混合盐分运移的三维水文地质模型、采用计算机输出状态变量估算所选模型参数的自动校正程序,及一个连接遗传算法和模拟模型的最优化模块。考虑到不一致目标和问题限制等因素,计算系统用于对缓解海水入侵的替代策略进行排列。这个计算系统应用于(巴勒斯坦)加沙地带沿海含水层,以确定2011-2020年切实可行的地下水管理策略。最优化的解决方法能够:(1)保持接近使用者确定的最高水位的市政地下水井未来总的抽取量;(2)增加平均地下水水头;(3)降低抽取的盐分总质量及减少受海水入侵影响的区域范围。ResumoA intrusão salina é uma das maiores ameaças aos recursos de água doce nas zonas costeiras, muitas vezes agravada pela sobre-exploração das águas subterrâneas. São necessárias medidas de mitigação para gerir adequadamente os aquíferos e para restaurar a qualidade da água subterrânea. Este estudo integra três ferramentas computacionais numa estrutura unificada para investigar a intrusão salina nas zonas costeiras e avaliar estratégias para a gestão de recursos hídricos subterrâneos sob pressões naturais e induzidas pelo homem. Os três componentes são um modelo hidrogeológico tridimensional para fluxo variavelmente saturado dependente da densidade e transporte miscível de sal, um procedimento de calibração automático que usa as variáveis de estado resultantes do modelo para estimar os parâmetros do modelo selecionado, e um módulo de otimização que agrupa um algoritmo genético com o modelo de simulação. O sistema computacional é usado para classificar as estratégias alternativas para mitigação da intrusão de água do mar, tendo em conta os objetivos contraditórios e as condicionantes do problema. É aplicado ao aquífero costeiro da Faixa de Gaza (Palestina) para identificar uma estratégia de gestão de águas subterrâneas viável para o período 2011–2020. A solução otimizada é capaz de: (1) manter a extração futura global em furos de água subterrânea municipais perto do nível máximo definido pelo utilizador, (2) aumentar os potenciais hidráulicos médios da água subterrânea, e (3) reduzir tanto a massa total de sal extraído, como a extensão das áreas afetadas pela intrusão salina.

[1]  S. P. Neuman,et al.  Estimation of aquifer parameters under transient and steady-state conditions: 2 , 1986 .

[2]  U. Shamir,et al.  Optimal Annual Operation of a Coastal Aquifer , 1984 .

[3]  Andres Alcolea,et al.  Inverse problem in hydrogeology , 2005 .

[4]  Bryson C. Bates,et al.  Calibration of a modified SFB model for twenty-five Australian catchments using simulated annealing , 1997 .

[5]  A. Larabi,et al.  Evaluation and numerical modeling of seawater intrusion in the Gaza aquifer (Palestine) , 2006 .

[6]  B. Shomar,et al.  Assessment of Groundwater Quality in the Gaza Strip, Palestine Using GIS Mapping , 2010 .

[7]  Mohammed O. Habboub,et al.  Modeling the Impact of Land-Use Change on Water Budget of Gaza Strip , 2012 .

[8]  Xun Zhou,et al.  Optimal schemes of groundwater exploitation for prevention of seawater intrusion in the Leizhou Peninsula in southern China , 2003 .

[9]  S. Sorooshian,et al.  Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .

[10]  Paul M. Barlow Use of Simulation-Optimization Modeling to Assess Regional Ground-Water Systems , 2005 .

[11]  Robert Willis,et al.  Planning Model for Optimal Control of Saltwater Intrusion , 1988 .

[12]  Simulation of seawater intrusion into the Khan Yunis area of the Gaza Strip coastal aquifer , 1998 .

[13]  John Doherty,et al.  Efficient accommodation of local minima in watershed model calibration , 2006 .

[14]  G. Gambolati,et al.  Three-Dimensional Model of Coupled Density-Dependent Flow and Miscible Salt Transport , 1999 .

[15]  Bithin Datta,et al.  Development of multiobjective management models for coastal aquifers , 1999 .

[16]  L. Slooten,et al.  Computational and conceptual issues in the calibration of seawater intrusion models , 2010 .

[17]  C. Voss,et al.  Inverse modeling for seawater intrusion in coastal aquifers: Insights about parameter sensitivities, variances, correlations and estimation procedures derived from the Henry problem , 2006 .

[18]  P. Huyakorn,et al.  Techniques for Making Finite Elements Competitve in Modeling Flow in Variably Saturated Porous Media , 1984 .

[19]  F. A. O. Otieno,et al.  Groundwater management under uncertainty: a multi-objective approach. , 2000 .

[20]  Michelangelo Puliga,et al.  Climate model validation and selection for hydrological applications in representative Mediterranean catchments , 2013 .

[21]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[22]  C. Paniconi,et al.  Modeling and Analysis of Seawater Intrusion in the Coastal Aquifer of Eastern Cap-Bon, Tunisia , 2001 .

[23]  R. Kalin,et al.  Multi-objective optimization for sustainable groundwater resource management in a semiarid catchment , 2001 .

[24]  D. A. Barry,et al.  Seawater intrusion processes, investigation and management: Recent advances and future challenges , 2013 .

[25]  J. Bear,et al.  Modeling groundwater flow and pollution , 1987 .

[26]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[27]  A. Cheng,et al.  Seawater intrusion in coastal aquifers : concepts, methods, and practices , 1999 .

[28]  Groundwater modelling and marine intrusion in the semi‐arid systems (Cap‐Bon, Tunisia) , 2011 .

[29]  E. Custodio Coastal aquifers of Europe: an overview , 2010 .

[30]  E. Poeter,et al.  Inverse Models: A Necessary Next Step in Ground‐Water Modeling , 1997 .

[31]  A. Cheng,et al.  Pumping optimization in saltwater‐intruded coastal aquifers , 2000 .

[32]  A. Werner,et al.  Characterisation of sea-water intrusion in the Pioneer Valley, Australia using hydrochemistry and three-dimensional numerical modelling , 2006 .

[33]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[34]  David Huard,et al.  Hydrologic response to multimodel climate output using a physically based model of groundwater/surface water interactions , 2012 .

[35]  Bithin Datta,et al.  Optimal Management of Coastal Aquifers Using Linked Simulation Optimization Approach , 2005 .

[36]  Nataliia Kussul,et al.  Grid computing technology for hydrological applications , 2011 .

[37]  A. Naji,et al.  Optimal Extraction of Groundwater in Gaza Coastal Aquifer , 2009 .

[38]  G. Lecca,et al.  Saltwater intrusion in the plain of Oristano(Sardinia) , 2002 .

[39]  D. Carroll GENETIC ALGORITHMS AND OPTIMIZING CHEMICAL OXYGEN-IODINE LASERS , 1996 .

[40]  M. Antonellini,et al.  Salt water intrusion in the coastal aquifer of the southern Po Plain, Italy , 2008 .

[41]  A. Naji,et al.  Optimal and sustainable extraction of groundwater in coastal aquifers , 2005 .

[42]  Giuditta Lecca,et al.  AQUAGRID: an extensible platform for collaborative problem solving in groundwater protection , 2009, Earth Sci. Informatics.

[43]  W. Sanford,et al.  Current challenges using models to forecast seawater intrusion: lessons from the Eastern Shore of Virginia, USA , 2010 .

[44]  S. Gorelick A review of distributed parameter groundwater management modeling methods , 1983 .

[45]  C. Paniconi,et al.  Picard and Newton linearization for the coupled model for saltwater intrusion in aquifers , 1995 .

[46]  B. Datta,et al.  Saltwater Intrusion Management of Coastal Aquifers. I: Linked Simulation-Optimization , 2009 .

[47]  David P. Ahlfeld,et al.  Optimal management of flow in groundwater systems , 2000 .

[48]  Bithin Datta,et al.  Application of optimisation techniques in groundwater quantity and quality management , 2001 .

[49]  B. Babbitt,et al.  METHODS AND GUIDELINES FOR EFFECTIVE MODEL CALIBRATION , 2001 .