Pitfalls for Categorizations of Objective Interestingness Measures for Rule Discovery

[1]  Patrick Meyer,et al.  On selecting interestingness measures for association rules: User oriented description and multiple criteria decision aid , 2008, Eur. J. Oper. Res..

[2]  Ning Zhong,et al.  Spiral Removal of Exceptional Patients for Mining Chronic Hepatitis Data , 2007, New Generation Computing.

[3]  Shusaku Tsumoto,et al.  Evaluating a Rule Evaluation Support Method Based on Objective Rule Evaluation Indices , 2006, PAKDD.

[4]  Philippe Lenca,et al.  Aggregation of Valued Relations Applied to Association Rule Interestingness Measures , 2006, MDAI.

[5]  Petr Hájek,et al.  The GUHA method of automatic hypotheses determination , 1966, Computing.

[6]  Shusaku Tsumoto,et al.  A rule evaluation support method with learning models based on objective rule evaluation indexes , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[7]  Deborah R. Carvalho,et al.  Evaluating the Correlation Between Objective Rule Interestingness Measures and Real Human Interest , 2005, PKDD.

[8]  Ning Zhong,et al.  Multi-strategy Instance Selection in Mining Chronic Hepatitis Data , 2005, ISMIS.

[9]  Hiep Xuan Huynh,et al.  Clustering Interestingness Measures with Positive Correaltion , 2005, ICEIS.

[10]  Takahira Yamaguchi,et al.  Evaluation of Rule Interestingness Measures with a Clinical Dataset on Hepatitis , 2004, PKDD.

[11]  Ning Zhong,et al.  Spiral Discovery of a Separate Prediction Model from Chronic Hepatitis Data , 2004, JSAI Workshops.

[12]  Einoshin Suzuki,et al.  Undirected Discovery of Interesting Exception Rules , 2002, Int. J. Pattern Recognit. Artif. Intell..

[13]  Jaideep Srivastava,et al.  Selecting the right interestingness measure for association patterns , 2002, KDD.

[14]  Howard J. Hamilton,et al.  Evaluation of Interestingness Measures for Ranking Discovered Knowledge , 2001, PAKDD.

[15]  Howard J. Hamilton,et al.  Applying Objective Interestingness Measures in Data Mining Systems , 2000, PKDD.

[16]  Shusaku Tsumoto,et al.  Evaluating Hypothesis-Driven Exception-Rule Discovery with Medical Data Sets , 2000, PAKDD.

[17]  Eamonn J. Keogh,et al.  Scaling up Dynamic Time Warping to Massive Dataset , 1999, PKDD.

[18]  Howard J. Hamilton,et al.  Heuristic Measures of Interestingness , 1999, PKDD.

[19]  Roberto J. Bayardo,et al.  Mining the most interesting rules , 1999, KDD '99.

[20]  Balaji Padmanabhan,et al.  A Belief-Driven Method for Discovering Unexpected Patterns , 1998, KDD.

[21]  Einoshin Suzuki,et al.  Autonomous Discovery of Reliable Exception Rules , 1997, KDD.

[22]  Rajeev Motwani,et al.  Beyond market baskets: generalizing association rules to correlations , 1997, SIGMOD '97.

[23]  Abraham Silberschatz,et al.  What Makes Patterns Interesting in Knowledge Discovery Systems , 1996, IEEE Trans. Knowl. Data Eng..

[24]  Padhraic Smyth,et al.  Bounds on the mean classification error rate of multiple experts , 1996, Pattern Recognit. Lett..

[25]  Masamichi Shimura,et al.  Exceptional Knowledge Discovery in Databases Based on Information Theory , 1996, KDD.

[26]  Heikki Mannila,et al.  Fast Discovery of Association Rules , 1996, Advances in Knowledge Discovery and Data Mining.

[27]  Christopher J. Merz,et al.  UCI Repository of Machine Learning Databases , 1996 .

[28]  W. Klosgen,et al.  A Multipattern and Multistrategy Discovery Approach , 1996, KDD 1996.

[29]  Ido Dagan,et al.  Knowledge Discovery in Textual Databases (KDT) , 1995, KDD.

[30]  Padhraic Smyth,et al.  An Information Theoretic Approach to Rule Induction from Databases , 1992, IEEE Trans. Knowl. Data Eng..

[31]  Gregory Piatetsky-Shapiro,et al.  Discovery, Analysis, and Presentation of Strong Rules , 1991, Knowledge Discovery in Databases.

[32]  Régis Gras,et al.  Élaboration et évaluation d'un indice d'implication pour des données binaires. I , 1981 .

[33]  Nelson M. Blachman,et al.  The amount of information that y gives about X , 1968, IEEE Trans. Inf. Theory.