Multi-polar t-conorms and uninorms

Abstract Transformation of uninorms defined on the unit interval to the bipolar scale yields bipolar t-conorms and transformation of nullnorms on the unit interval yields bipolar t-norms. We use this relation in the investigation of the structure of bipolar and multi-polar t-norms and t-conorms. We use the same transformation of the unit interval into the bipolar scale in order to obtain bipolar aggregation operators from ordinal sum t-norms and t-conorms. The extensions of these special bipolar aggregation operators generalize both multi-polar t-norms and t-conorms and therefore we call them multi-polar uninorms. Several examples of multi-polar t-conorms and uninorms are also presented.

[1]  Daniel Ruiz,et al.  Distributivity and conditional distributivity of a uninorm and a continuous t-conorm , 2006, IEEE Transactions on Fuzzy Systems.

[2]  M. J. Frank,et al.  Associative Functions: Triangular Norms And Copulas , 2006 .

[3]  G. Choquet Theory of capacities , 1954 .

[4]  R. Mesiar,et al.  Aggregation Functions: Aggregation on ordinal scales , 2009 .

[5]  Bernard De Baets,et al.  The functional equations of Frank and Alsina for uninorms and nullnorms , 2001, Fuzzy Sets Syst..

[6]  Andrea Mesiarová-Zemánková,et al.  Multipolar Aggregation Operators in Reasoning Methods for Fuzzy Rule-Based Classification Systems , 2014, IEEE Transactions on Fuzzy Systems.

[7]  Radko Mesiar,et al.  New construction methods for aggregation operators. , 2000 .

[8]  Andrea Mesiarová-Zemánková,et al.  Multi- and multi-polar capacities , 2016, Fuzzy Sets Syst..

[9]  Khurshid Ahmad,et al.  Multi-polar Choquet integral , 2013, Fuzzy Sets Syst..

[10]  Francesc Esteva,et al.  Review of Triangular norms by E. P. Klement, R. Mesiar and E. Pap. Kluwer Academic Publishers , 2003 .

[11]  Bernard De Baets,et al.  A single-point characterization of representable uninorms , 2012, Fuzzy Sets Syst..

[12]  D. Denneberg Non-additive measure and integral , 1994 .

[13]  Khurshid Ahmad,et al.  Multi-polar Aggregation , 2012, IPMU.

[14]  A. Tversky,et al.  Advances in prospect theory: Cumulative representation of uncertainty , 1992 .

[15]  J. Šipoš,et al.  Integral with respect to a pre-measure , 1979 .

[16]  Ronald R. Yager,et al.  Uninorm aggregation operators , 1996, Fuzzy Sets Syst..

[17]  Andrea Mesiarová-Zemánková,et al.  Averaging operators in fuzzy classification systems , 2015, Fuzzy Sets Syst..

[18]  Radko Mesiar,et al.  Aggregation operators with annihilator , 2005, Int. J. Gen. Syst..

[19]  Ronald R. Yager,et al.  Structure of Uninorms , 1997, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[20]  Andrea Mesiarová-Zemánková,et al.  Extended multi-polarity and multi-polar-valued fuzzy sets , 2014, Fuzzy Sets Syst..

[21]  E. Pap Null-Additive Set Functions , 1995 .

[22]  Radko Mesiar,et al.  Triangular Norms , 2000, Trends in Logic.

[23]  Mariano Eriz Aggregation Functions: A Guide for Practitioners , 2010 .

[24]  R. Mesiar,et al.  ”Aggregation Functions”, Cambridge University Press , 2008, 2008 6th International Symposium on Intelligent Systems and Informatics.