Ferroelectric transitions at ferroelectric domain walls found from first principles.

We present a first-principles study of model domain walls (DWs) in prototypic ferroelectric PbTiO(3). At high temperature the DW structure is somewhat trivial, with atoms occupying high-symmetry positions. However, upon cooling the DW undergoes a symmetry-breaking transition characterized by a giant dielectric anomaly and the onset of a large and switchable polarization. Our results thus corroborate previous arguments for the occurrence of ferroic orders at structural DWs, providing a detailed atomistic picture of a temperature-driven DW-confined transformation. Beyond its relevance to the field of ferroelectrics, our results highlight the interest of these DWs in the broader areas of low-dimensional physics and phase transitions in strongly fluctuating systems.

[1]  B. Houchmandzadeh,et al.  Order parameter coupling and chirality of domain walls , 1991 .

[2]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[3]  Vanderbilt,et al.  Competing structural instabilities in cubic perovskites. , 1994, Physical review letters.

[4]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[5]  B. Strukov,et al.  Ferroelectric Phenomena in Crystals: Physical Foundations , 1998 .

[6]  E. Salje,et al.  LETTER TO THE EDITOR: Sheet superconductivity in twin walls: experimental evidence of ? , 1998 .

[7]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[8]  S. K. Streiffer,et al.  Observation of nanoscale 180° stripe domains in ferroelectric PbTiO3 thin films , 2002 .

[9]  Ab initio study of ferroelectric domain walls in PbTiO 3 , 2001, cond-mat/0109257.

[10]  Lixin He,et al.  First-principles study of oxygen-vacancy pinning of domain walls in PbTiO 3 , 2003 .

[11]  L Bellaiche,et al.  Phase diagram of pb(Zr,Ti)O3 solid solutions from first principles. , 2006, Physical review letters.

[12]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[13]  G. Kresse,et al.  SrTiO 3 and BaTiO 3 revisited using the projector augmented wave method: Performance of hybrid and semilocal functionals , 2008 .

[14]  E. Artacho,et al.  Ferrielectric twin walls in CaTiO3. , 2008, Physical review letters.

[15]  Donghwa Lee,et al.  Mixed Bloch-Néel-Ising character of 180° ferroelectric domain walls , 2009 .

[16]  J. Triscone,et al.  X-Ray Diffraction Studies of 180° Ferroelectric Domains in PbTiO3/SrTiO3 Superlattices under an Applied Electric Field , 2010 .

[17]  Landau theory of domain wall magnetoelectricity , 2010, 1002.3819.

[18]  E. Salje Multiferroic domain boundaries as active memory devices: trajectories towards domain boundary engineering. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[19]  H. Béa,et al.  Lateral piezoelectric response across ferroelectric domain walls in thin films , 2010, 1006.1237.

[20]  A. Zvezdin,et al.  Effect of magnetoelectrical interactions on the multiferroic domain walls , 2010, 1007.0894.

[21]  P Shafer,et al.  Above-bandgap voltages from ferroelectric photovoltaic devices. , 2010, Nature nanotechnology.

[22]  B. Noheda,et al.  Conduction through 71° domain walls in BiFeO3 thin films. , 2011, Physical review letters.

[23]  M. Alexe,et al.  Tip-enhanced photovoltaic effects in bismuth ferrite , 2011 .

[24]  Patrycja Paruch,et al.  Conduction at Domain Walls in Insulating Pb(Zr0.2Ti0.8)O3 Thin Films , 2011, Advanced materials.

[25]  E. Salje,et al.  Coupling of order parameters, chirality, and interfacial structures in multiferroic materials , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[26]  A Lubk,et al.  Flexoelectric rotation of polarization in ferroelectric thin films. , 2011, Nature materials.

[27]  E. Salje,et al.  Domain wall damping and elastic softening in SrTiO3: evidence for polar twin walls. , 2012, Physical review letters.

[28]  James F. Scott,et al.  Domain wall nanoelectronics , 2012 .

[29]  J. Hlinka,et al.  Stress-induced phase transition in ferroelectric domain walls of BaTiO3 , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[30]  A Gloter,et al.  Electrostatic coupling and local structural distortions at interfaces in ferroelectric/paraelectric superlattices. , 2012, Nano letters.

[31]  Anna N. Morozovska,et al.  Conductivity of Twin-Domain-Wall/Surface Junctions in Ferroelastics: Interplay of Deformation Potential, Octahedral Rotations, Improper Ferroelectricity, and Flexoelectric Coupling , 2012 .

[32]  P. Chiu,et al.  Magnetotransport at domain walls in BiFeO3. , 2012, Physical review letters.

[33]  E. Salje,et al.  Domains within domains and walls within walls: evidence for polar domains in cryogenic SrTiO3. , 2013, Physical review letters.

[34]  Structural phase transitions and electronic phenomena at 180-degree domain walls in rhombohedral BaTiO3 , 2013 .

[35]  Philippe Ghosez,et al.  First-principles model potentials for lattice-dynamical studies: general methodology and example of application to ferroic perovskite oxides , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[36]  J. Junquera,et al.  Erratum: Domain walls in a perovskite oxide with two primary structural order parameters: First-principles study ofBiFeO3[Phys. Rev. B87, 024102 (2013)] , 2014 .