International Journal of Geographical Information Science an Improved Artificial Immune System for Seeking the Pareto Front of Land-use Allocation Problem in Large Areas an Improved Artificial Immune System for Seeking the Pareto Front of Land-use Allocation Problem in Large Areas

The Pareto front can provide valuable information on land-use planning decision by revealing the possible trade-offs among multiple, conflicting objectives. However, seeking the Pareto front of land-use allocation is much more difficult than finding a unique optimal solution, especially when dealing with large-area regions. This article proposes an improved artificial immune system for multi-objective land-use allocation (AIS-MOLA) to tackle this challenging task. The proposed AIS is equipped with three modified operators, namely (1) a heuristic hypermutation based on compromise programming, (2) a non-dominated neighbour-based proportional cloning and (3) a novel crossover operator that preserves connected patches. To validate the proposed algorithm, it was applied in a hypothetical land-use allocation problem. Compared with the Pareto Simulated Annealing (PSA) method, AIS-MOLA can generate solutions more approximate to the Pareto front, with computation time amounting to only 5.1% of PSA. In addition, AIS-MOLA was also applied in the case study of Panyu, Guangdong, PR China, a large area with cells. Experimental results indicate that this algorithm, even dealing with large-area land-use allocation problems, is capable of generating optimal alternative solutions approximate to the true Pareto front. Moreover, the distribution of these solutions can quantitatively demonstrate the complex trade-offs between the spatial suitability and the compactness in the study area. Software and supplementary materials are available at http://www.geosimulation.cn/AIS-MOLA/.

[1]  Gerard B. M. Heuvelink,et al.  Using simulated annealing for resource allocation , 2002, Int. J. Geogr. Inf. Sci..

[2]  Xin Yao,et al.  Performance Scaling of Multi-objective Evolutionary Algorithms , 2003, EMO.

[3]  J. Dennis,et al.  A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems , 1997 .

[4]  M. Armstrong,et al.  Exploring the Geographic Consequences of Public Policies Using Evolutionary Algorithms , 2004, Annals of the Association of American Geographers.

[5]  Inés Santé-Riveira,et al.  Algorithm based on simulated annealing for land-use allocation , 2008, Comput. Geosci..

[6]  M. Pauline Baker,et al.  Computer Graphics, C Version , 1996 .

[7]  Antti Lehtinen,et al.  Selecting forest reserves with a multiobjective spatial algorithm , 2003 .

[8]  J. Radke,et al.  An Application of Linear Programming and Geographic Information Systems: Cropland Allocation in Antigua , 1992 .

[9]  Juhani Koski,et al.  Multicriteria Truss Optimization , 1988 .

[10]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[11]  J. Hudson A DIAMOND ANNIVERSARY , 1979 .

[12]  Richard L. Church,et al.  Spatial optimization as a generative technique for sustainable multiobjective land‐use allocation , 2008, Int. J. Geogr. Inf. Sci..

[13]  Theodor J. Stewart,et al.  A genetic algorithm approach to multiobjective land use planning , 2004, Comput. Oper. Res..

[14]  W. Stadler Multicriteria Optimization in Engineering and in the Sciences , 1988 .

[15]  Simon M. Garrett,et al.  How Do We Evaluate Artificial Immune Systems? , 2005, Evolutionary Computation.

[16]  Mehrdad Tamiz,et al.  Multi-objective meta-heuristics: An overview of the current state-of-the-art , 2002, Eur. J. Oper. Res..

[17]  Xiaoping Liu,et al.  Zoning farmland protection under spatial constraints by integrating remote sensing, GIS and artificial immune systems , 2011, Int. J. Geogr. Inf. Sci..

[18]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[19]  John M. Flach,et al.  MGA: a decision support system for complex, incompletely defined problems , 1990, IEEE Trans. Syst. Man Cybern..

[20]  Christopher J. Brookes,et al.  A genetic algorithm for designing optimal patch configurations in GIS , 2001, Int. J. Geogr. Inf. Sci..

[21]  Susan Craw,et al.  Applying Genetic Algorithms to Multi-Objective Land Use Planning , 2000, GECCO.

[22]  Lewis D. Hopkins,et al.  Generating alternative solutions for dynamic programing models of water resources problems , 1982 .

[23]  Xiaoping Liu,et al.  An agent-based model for optimal land allocation (AgentLA) with a contiguity constraint , 2010, Int. J. Geogr. Inf. Sci..

[24]  Ningchuan Xiao,et al.  A multiobjective evolutionary algorithm for optimizing spatial contiguity in reserve network design , 2011, Landscape Ecology.

[25]  Daniel G. Brown,et al.  Knowledge-informed Pareto simulated annealing for multi-objective spatial allocation , 2007, Comput. Environ. Urban Syst..

[26]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[27]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[28]  D. Griffith Spatial Autocorrelation , 2020, Spatial Analysis Methods and Practice.

[29]  Richard L. Church,et al.  Exploratory spatial optimization in site search : a neighborhood operator approach , 2000 .

[30]  Y. Wang,et al.  Seeking the Pareto front for multiobjective spatial optimization problems , 2008, Int. J. Geogr. Inf. Sci..

[31]  Sadiq M. Sait,et al.  Evolutionary algorithms, simulated annealing and tabu search: a comparative study , 2001 .

[32]  Michael Batty,et al.  Spatial multi-objective land use optimization: extensions to the non-dominated sorting genetic algorithm-II , 2011, Int. J. Geogr. Inf. Sci..

[33]  H. Fawcett Manual of Political Economy , 1995 .

[34]  Carlos A. Coello Coello,et al.  Solving Multiobjective Optimization Problems Using an Artificial Immune System , 2005, Genetic Programming and Evolvable Machines.

[35]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[36]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[37]  D Nam,et al.  Multiobjective simulated annealing: a comparative study to evolutionary algorithms , 2000 .

[38]  E. D. Brill,et al.  Modeling to Generate Alternatives: The HSJ Approach and an Illustration Using a Problem in Land Use Planning , 1982 .

[39]  J. Klose,et al.  On the Application of a Method of Reference Point Approximation to Bicriterial Optimization Problems in Chemical Engineering , 1992 .

[40]  Piotr Czyzżak,et al.  Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization , 1998 .

[41]  G. Heuvelink,et al.  Using Linear Integer Programming for Multi-Site Land-Use Allocation , 2003 .

[42]  David M. Crohn,et al.  Mixed-Integer Programming Approach for Designing Land Application Systems at a Regional Scale , 1998 .

[43]  J. Ronald Eastman,et al.  Multi-criteria and multi-objective decision making for land allocation using GIS , 1998 .

[44]  Maoguo Gong,et al.  Clonal Selection with Immune Dominance and Anergy Based Multiobjective Optimization , 2005, EMO.

[45]  F. B. Vernadat,et al.  Decisions with Multiple Objectives: Preferences and Value Tradeoffs , 1994 .

[46]  Xiaoping Liu,et al.  A multi-type ant colony optimization (MACO) method for optimal land use allocation in large areas , 2012, Int. J. Geogr. Inf. Sci..

[47]  Xiaoping Liu,et al.  Coupling urban cellular automata with ant colony optimization for zoning protected natural areas under a changing landscape , 2011, Int. J. Geogr. Inf. Sci..

[48]  Dipankar Dasgupta,et al.  Immunological Computation: Theory and Applications , 2008 .

[49]  Xiaohu Zhang,et al.  Simulating land-use dynamics under planning policies by integrating artificial immune systems with cellular automata , 2010, Int. J. Geogr. Inf. Sci..

[50]  Wei Chen,et al.  Quality utility : a Compromise Programming approach to robust design , 1999 .

[51]  Paul H. Calamai,et al.  Evolutionary Multi-objective Optimization for landscape system design , 2011, J. Geogr. Syst..

[52]  Hisao Ishibuchi,et al.  Evolutionary many-objective optimization: A short review , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[53]  Thomas L. Saaty,et al.  How to Make a Decision: The Analytic Hierarchy Process , 1990 .

[54]  Maoguo Gong,et al.  Multiobjective Immune Algorithm with Nondominated Neighbor-Based Selection , 2008, Evolutionary Computation.

[55]  Timothy C. Coburn,et al.  GIS and Multicriteria Decision Analysis , 2000 .

[56]  Khalid A. Eldrandaly,et al.  A GEP-based spatial decision support system for multisite land use allocation , 2010, Appl. Soft Comput..