TERMS FOR NATURAL DEDUCTION, SEQUENT CALCULUS AND CUT ELIMINATION IN CLASSICAL LOGIC

This paper revisits the results of Barendregt and Ghilezan (3) and generalizes them for classical logic. Instead of �-calculus, we use here �µ-calculus as the basic term cal- culus. We consider two extensionally equivalent type assignment systems for �µ-calculus, one corresponding to classical natural deduction, and the other to classical sequent cal- culus. Their relations and normalisation properties are investigated. As a consequence a short proof of Cut elimination theorem is obtained.

[1]  Christian Urban,et al.  Strong Normalisation of Cut-Elimination in Classical Logic , 1999, Fundam. Informaticae.

[2]  Michel Parigot,et al.  Proofs of strong normalisation for second order classical natural deduction , 1997, Journal of Symbolic Logic.

[3]  W. V. Quine,et al.  Natural deduction , 2021, An Introduction to Proof Theory.

[4]  M. Sørensen,et al.  Lectures on the Curry-Howard Isomorphism , 2013 .

[5]  René David,et al.  Arithmetical Proofs of Strong Normalization Results for Symmetric ?-calculi , 2007, Fundam. Informaticae.

[6]  C.-H. Luke Ong,et al.  A Curry-Howard foundation for functional computation with control , 1997, POPL '97.

[7]  Hugo Herbelin,et al.  Minimal Classical Logic and Control Operators , 2003, ICALP.

[8]  Timothy G. Griffin,et al.  A formulae-as-type notion of control , 1989, POPL '90.

[9]  Philip Wadler,et al.  Call-by-Value Is Dual to Call-by-Name - Reloaded , 2005, RTA.

[10]  Hugo Herbelin,et al.  The duality of computation , 2000, ICFP '00.

[11]  William A. Howard,et al.  The formulae-as-types notion of construction , 1969 .

[12]  Stefano Berardi,et al.  A Symmetric Lambda Calculus for Classical Program Extraction , 1994, Inf. Comput..

[13]  Daniel J. Dougherty,et al.  Characterizing strong normalization in the Curien-Herbelin symmetric lambda calculus: Extending the Coppo-Dezani heritage , 2008, Theor. Comput. Sci..

[14]  Hugo Herbelin,et al.  A Lambda-Calculus Structure Isomorphic to Gentzen-Style Sequent Calculus Structure , 1994, CSL.

[15]  Hendrik Pieter Barendregt,et al.  Lambda terms for natural deduction, sequent calculus and cut elimination , 2000, J. Funct. Program..

[16]  Michel Parigot,et al.  Lambda-Mu-Calculus: An Algorithmic Interpretation of Classical Natural Deduction , 1992, LPAR.

[17]  Daniel J. Dougherty,et al.  Strong Normalization of the Dual Classical Sequent Calculus , 2005, LPAR.

[18]  Philip Wadler Call-by-Value Is Dual to Call-by-Name - Reloaded , 2005, RTA.