TERMS FOR NATURAL DEDUCTION, SEQUENT CALCULUS AND CUT ELIMINATION IN CLASSICAL LOGIC
暂无分享,去创建一个
[1] Christian Urban,et al. Strong Normalisation of Cut-Elimination in Classical Logic , 1999, Fundam. Informaticae.
[2] Michel Parigot,et al. Proofs of strong normalisation for second order classical natural deduction , 1997, Journal of Symbolic Logic.
[3] W. V. Quine,et al. Natural deduction , 2021, An Introduction to Proof Theory.
[4] M. Sørensen,et al. Lectures on the Curry-Howard Isomorphism , 2013 .
[5] René David,et al. Arithmetical Proofs of Strong Normalization Results for Symmetric ?-calculi , 2007, Fundam. Informaticae.
[6] C.-H. Luke Ong,et al. A Curry-Howard foundation for functional computation with control , 1997, POPL '97.
[7] Hugo Herbelin,et al. Minimal Classical Logic and Control Operators , 2003, ICALP.
[8] Timothy G. Griffin,et al. A formulae-as-type notion of control , 1989, POPL '90.
[9] Philip Wadler,et al. Call-by-Value Is Dual to Call-by-Name - Reloaded , 2005, RTA.
[10] Hugo Herbelin,et al. The duality of computation , 2000, ICFP '00.
[11] William A. Howard,et al. The formulae-as-types notion of construction , 1969 .
[12] Stefano Berardi,et al. A Symmetric Lambda Calculus for Classical Program Extraction , 1994, Inf. Comput..
[13] Daniel J. Dougherty,et al. Characterizing strong normalization in the Curien-Herbelin symmetric lambda calculus: Extending the Coppo-Dezani heritage , 2008, Theor. Comput. Sci..
[14] Hugo Herbelin,et al. A Lambda-Calculus Structure Isomorphic to Gentzen-Style Sequent Calculus Structure , 1994, CSL.
[15] Hendrik Pieter Barendregt,et al. Lambda terms for natural deduction, sequent calculus and cut elimination , 2000, J. Funct. Program..
[16] Michel Parigot,et al. Lambda-Mu-Calculus: An Algorithmic Interpretation of Classical Natural Deduction , 1992, LPAR.
[17] Daniel J. Dougherty,et al. Strong Normalization of the Dual Classical Sequent Calculus , 2005, LPAR.
[18] Philip Wadler. Call-by-Value Is Dual to Call-by-Name - Reloaded , 2005, RTA.