Phosphorus and Silicon Containing Low‐Melting Organic–Inorganic Glasses Improve Flame Retardancy of Epoxy/Clay Composites

[1]  B. Schartel,et al.  A low melting organic-inorganic glass and its effect on flame retardancy of clay/epoxy composites , 2011 .

[2]  Bernhard Schartel,et al.  Phosphorus-based Flame Retardancy Mechanisms—Old Hat or a Starting Point for Future Development? , 2010, Materials.

[3]  V. Cádiz,et al.  Development of flame retardant phosphorus- and silicon-containing polybenzoxazines , 2009 .

[4]  Y. Chen-Yang,et al.  Properties of novel epoxy/clay nanocomposites prepared with a reactive phosphorus-containing organoclay , 2008 .

[5]  M. Döring,et al.  Novel high Tg flame retardancy approach for epoxy resins , 2008 .

[6]  Bernhard Schartel,et al.  Development of fire‐retarded materials—Interpretation of cone calorimeter data , 2007 .

[7]  A. I. Balabanovich,et al.  Pyrolysis of epoxy resins and fire behavior of epoxy resin composites flame‐retarded with 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide additives , 2007 .

[8]  A. I. Balabanovich,et al.  Influence of the oxidation state of phosphorus on the decomposition and fire behaviour of flame-retarded epoxy resin composites , 2006 .

[9]  B. Schartel Considerations Regarding Specific Impacts of the Principal Fire Retardancy Mechanisms in Nanocomposites , 2006 .

[10]  B. Schartel,et al.  Phosphonium‐modified layered silicate epoxy resins nanocomposites and their combinations with ATH and organo‐phosphorus fire retardants , 2006 .

[11]  G. Camino,et al.  Thermal and combustion behaviour of layered silicate–epoxy nanocomposites , 2005 .

[12]  J. Gilman,et al.  Preparation and flame resistance properties of revolutionary self-extinguishing epoxy nanocomposites based on layered double hydroxides , 2005 .

[13]  G. Simon,et al.  A phosphorus‐containing diamine for flame‐retardant, high‐functionality epoxy resins. I. Synthesis, reactivity, and thermal degradation properties , 2004 .

[14]  M. Hussain,et al.  Effect of organo-phosphorus and nano-clay materials on the thermal and fire performance of epoxy resins , 2004 .

[15]  B. Schartel,et al.  Combustion behaviour of epoxide based nanocomposites with ammonium and phosphonium bentonites , 2003 .

[16]  T. Yoko,et al.  Preparation of organic-inorganic hybrid precursors O=P(OSiMe3)x(OH)3-x for low-melting glasses , 2003 .

[17]  M. Lewin,et al.  2 – Mechanisms and modes of action in flame retardancy of polymers , 2001 .

[18]  C. Lin,et al.  Synthesis and properties of phosphorus-containing advanced epoxy resins. II , 2000 .

[19]  Chun-Shan Wang,et al.  Synthesis and properties of epoxy resins containing bis(3-hydroxyphenyl) phenyl phosphate , 2000 .

[20]  C. Lin,et al.  Synthesis and properties of phosphorus-containing epoxy resins by novel method , 1999 .

[21]  Ying‐Ling Liu,et al.  Phosphorus-containing epoxy for flame retardant. III: Using phosphorylated diamines as curing agents , 1997 .

[22]  Ying‐Ling Liu,et al.  Synthesis, characterization, thermal, and flame retardant properties of phosphate-based epoxy resins , 1997 .

[23]  J. Thomason The interface region in glass fibre-reinforced epoxy resin composites: 2. Water absorption, voids and the interface , 1995 .

[24]  Joseph Green,et al.  A Review of Phosphorus-Containing Flame Retardants , 1992 .