Combining spectral mixture analysis and object-based classification for fire severity mapping

Este estudio presenta una metodologia rapida y precisa para la evaluacion de los niveles de severidad que afectan a grandes incendios forestales. El trabajo combina un modelo de mezclas espectrales y un analisis de imagenes basado en objetos con el objetivo de cartografiar distintos niveles de severidad (alto, moderado y bajo) empleando una imagen multiespectral Landsat Enhanced Thematic Mapper. Este modelo es testado en un gran incendio forestal ocurrido en el noroeste de Espana. Las imagenes fraccion obtenidas tras aplicar el modelo de mezclas a la imagen Landsat fueron utilizadas como datos de entrada en el analisis basado en objetos. En este se llevo a cabo una segmentacion multinivel y una posterior clasificacion usando funciones de pertenencia. Esta metodologia fue comparada con otras mas simples con el fin de evaluar su conveniencia a al hora de distinguir entre los tres niveles de severidad anteriormente mencionados. El test de McNemar fue empleado para evaluar la significancia estadistica de la diferencia entre los metodos testados en el estudio. El metodo combinado alcanzo la mas alta precision con un 97,32% y un indice Kappa del 95,96%, ademas de mejorar la precision de los niveles individualmente.

[1]  J. W. Wagtendonk,et al.  Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity , 2004 .

[2]  J. R. Jensen,et al.  Subpixel classification of Bald Cypress and Tupelo Gum trees in thematic mapper imagery , 1997 .

[3]  Emilio Chuvieco,et al.  Assessment of vegetation regeneration after fire through multitemporal analysis of AVIRIS images in the Santa Monica Mountains , 2002 .

[4]  J. Rogan,et al.  Mapping burn severity in southern California using spectral mixture analysis , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[5]  James K. Brown,et al.  Wildland fire in ecosystems: effects of fire on flora , 2000 .

[6]  P. Switzer,et al.  A transformation for ordering multispectral data in terms of image quality with implications for noise removal , 1988 .

[7]  Margaret E. Gardner,et al.  Mapping Chaparral in the Santa Monica Mountains Using Multiple Endmember Spectral Mixture Models , 1998 .

[8]  J. Retana,et al.  A quantitative comparison of methods for classifying burned areas with LISS‐III imagery , 2005 .

[9]  D. Roberts,et al.  Mapping forest degradation in the Eastern Amazon from SPOT 4 through spectral mixture models , 2003 .

[10]  Christopher Small,et al.  The Landsat ETM+ spectral mixing space , 2004 .

[11]  T. M. Lillesand,et al.  Remote Sensing and Image Interpretation , 1980 .

[12]  J. Boardman,et al.  Mapping target signatures via partial unmixing of AVIRIS data: in Summaries , 1995 .

[13]  D. Opitz,et al.  Classifying and mapping wildfire severity : A comparison of methods , 2005 .

[14]  Ioannis Z. Gitas,et al.  A semi-automated object-oriented model for burned area mapping in the Mediterranean region using Landsat-TM imagery , 2004 .

[15]  M. Cochrane Linear mixture model classification of burned forests in the Eastern Amazon , 1998 .

[16]  K. Ryan,et al.  Evaluating Prescribed Fires , 1985 .

[17]  Nancy F. Glenn,et al.  Relative suitability of indices derived from Landsat ETM+ and SPOT 5 for detecting fire severity in sagebrush steppe , 2009, Int. J. Appl. Earth Obs. Geoinformation.

[18]  A spectral unmixing approach for mapping burned areas in Mediterranean countries , 2005 .

[19]  E. Kasischke,et al.  Evaluating the potential of Landsat TM/ETM+ imagery for assessing fire severity in Alaskan black spruce forests , 2008 .

[20]  E. Chuvieco,et al.  Burn severity estimation from remotely sensed data: Performance of simulation versus empirical models , 2007 .

[21]  W. Hargrove,et al.  Effects of fire on landscape heterogeneity in Yellowstone National Park, Wyoming , 1994 .

[22]  John B. Adams,et al.  Classification of multispectral images based on fractions of endmembers: Application to land-cover change in the Brazilian Amazon , 1995 .

[23]  F. Lloret,et al.  Influence of fire severity on plant regeneration by means of remote sensing imagery , 2003 .

[24]  H. Safford,et al.  Fire effects on plant diversity in serpentine vs. sandstone chaparral , 2004 .

[25]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[26]  J. Cuevas,et al.  Minas de Riotinto (south Spain) forest fire: Burned area assessment and fire severity mapping using Landsat 5-TM, Envisat-MERIS, and Terra-MODIS postfire images , 2006 .

[27]  M. Wimberly,et al.  Assessment of fire severity and species diversity in the southern Appalachians using Landsat TM and ETM+ imagery , 2007 .

[28]  Russell G. Congalton,et al.  Assessing the accuracy of remotely sensed data : principles and practices , 1998 .

[29]  Ioannis Z. Gitas,et al.  Object-based image classification for burned area mapping of Creus Cape, Spain, using NOAA-AVHRR imagery , 2004 .

[30]  Jay D. Miller,et al.  Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR) , 2007 .

[31]  Jay D. Miller,et al.  Mapping forest post-fire canopy consumption in several overstory types using multi-temporal Landsat TM and ETM data , 2002 .

[32]  A. Knapp,et al.  C3 shrub expansion in a C4 grassland: positive post-fire responses in resources and shoot growth. , 2003, American journal of botany.

[33]  Matthew G. Rollins,et al.  Mapping Fire Regimes Across Time and Space: Understanding Coarse and Fine-scale Fire Patterns , 2001 .

[34]  Martin J. Wooster,et al.  Testing the potential of multi-spectral remote sensing for retrospectively estimating fire severity in African savannahs , 2005 .

[35]  Ioannis Z. Gitas,et al.  Mapping the severity of fire using object-based classification of Ikonos imagery , 2008 .

[36]  Peter Wallbrink,et al.  Effects of differing wildfire severities on soil wettability and implications for hydrological response , 2006 .

[37]  Eric S. Kasischke,et al.  Seasonal and topographic effects on estimating fire severity from Landsat TM/ETM+ data , 2008 .

[38]  G. Foody Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy , 2004 .

[39]  M. Karteris,et al.  Burnt land mapping at local scale , 1999 .

[40]  Mimicking Nature's Fire: Restoring Fire-Prone Forests In The West , 2005 .

[41]  Ioannis Z. Gitas,et al.  Fire type mapping using object-based classification of Ikonos imagery , 2006 .

[42]  '. EmilioChuvieco,et al.  Using Cluster Analysis to Improve the Selection of Training Statistics in Classifying Remotely Sensed Data , 2008 .

[43]  Norm Campbell,et al.  On the errors of two estimators of sub-pixel fractional cover when mixing is linear , 1998, IEEE Trans. Geosci. Remote. Sens..

[44]  J. Cuevas,et al.  MERIS Full Resolution data for mapping level‐of‐damage caused by forest fires: the Valencia de Alcántara event in August 2003 , 2007 .

[45]  D. Lu,et al.  Spectral Mixture Analysis of the Urban Landscape in Indianapolis with Landsat ETM+ Imagery , 2004 .

[46]  S. Ustin,et al.  Vegetation mapping on hardwood rangelands in California , 1996 .

[47]  Ioannis Z. Gitas,et al.  The development of an object-oriented classification model for operational burned area mapping on the Mediterranean island of Thasos using LANDSAT TM images. , 2002 .

[48]  S. Running,et al.  Remote Sensing of Forest Fire Severity and Vegetation Recovery , 1996 .

[49]  J. Settle,et al.  Linear mixing and the estimation of ground cover proportions , 1993 .

[50]  Nelson D. A. Mascarenhas,et al.  Use of synthetic bands derived from mixing models in the multispectral classification of remote sensing images , 1999 .

[51]  Mark Noonan,et al.  The post-fire measurement of fire severity and intensity in the Christmas 2001 Sydney wildfires , 2004 .

[52]  D. Neary,et al.  Fire's effects on ecosystems , 1998 .

[53]  Yosio Edemir Shimabukuro,et al.  The least-squares mixing models to generate fraction images derived from remote sensing multispectral data , 1991, IEEE Trans. Geosci. Remote. Sens..

[54]  F. J. García-Haro,et al.  Linear spectral mixture modelling to estimate vegetation amount from optical spectral data , 1996 .

[55]  Ioannis Z. Gitas,et al.  A performance evaluation of a burned area object-based classification model when applied to topographically and non-topographically corrected TM imagery , 2004 .

[56]  A. K. Milne,et al.  The use of remote sensing in mapping and monitoring vegetational change associated with bushfire events in Eastern Australia , 1986 .

[57]  U. Benz,et al.  Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information , 2004 .

[58]  John Rogan,et al.  Mapping fire-induced vegetation depletion in the Peloncillo Mountains, Arizona and New Mexico , 2001 .

[59]  N. Coops,et al.  Assessing plantation canopy condition from airborne imagery using spectral mixture analysis and fractional abundances , 2005 .

[60]  D. Verbyla,et al.  Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM , 2005 .

[61]  P. Teillet,et al.  On the Slope-Aspect Correction of Multispectral Scanner Data , 1982 .

[62]  L. Calvo,et al.  Space-time distribution patterns of shape Erica australis L. subsp. shape aragonensis (Willk) after experimental burning, cutting, and ploughing , 1998, Plant Ecology.

[63]  Alan R. Gillespie,et al.  Vegetation in deserts. I - A regional measure of abundance from multispectral images. II - Environmental influences on regional abundance , 1990 .

[64]  D. Roberts,et al.  A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery , 2002 .

[65]  M. Baatz,et al.  Object-oriented and Multi-scale Image Analysis in Semantic Networks Introduction: the Necessity for Integration of Remote Sensing and Gis , 2022 .

[66]  Mark W. Patterson,et al.  Mapping Fire-Induced Vegetation Mortality Using Landsat Thematic Mapper Data: A Comparison of Linear Transformation Techniques , 1998 .

[67]  P. Mausel,et al.  Assessment of vegetation change in a fire-altered forest landscape. , 1990 .

[68]  K. Navulur Multispectral Image Analysis Using the Object-Oriented Paradigm , 2006 .

[69]  G. Thomas,et al.  An evaluation of spectral mixture modelling applied to a semi-arid environment , 2002 .

[70]  D. Lobell,et al.  Quantifying vegetation change in semiarid environments: precision and accuracy of spectral mixture analysis and the normalized difference vegetation index. , 2000 .

[71]  C. Key,et al.  Remote sensing sensitivity to fire severity and fire recovery , 2005 .

[72]  F. Sunar,et al.  Forest fire analysis with remote sensing data , 2001 .

[73]  W. Setzer,et al.  Satellite Remote Sensing of Fires: Potential and Limitations , 1993 .