REDUCTION PROCEDURES IN CLASSICAL AND QUANTUM MECHANICS

We present, in a pedagogical style, many instances of reduction procedures appearing in a variety of physical situations, both classical and quantum. We concentrate on the essential aspects of any reduction procedure, both in the algebraic and geometrical setting, elucidating the analogies and the differences between the classical and the quantum situations.

[1]  Richard Cushman,et al.  Global Aspects of Classical Integrable Systems , 2004 .

[2]  S. Chaturvedi,et al.  Wigner-Weyl correspondence in quantum mechanics for continuous and discrete systems-a Dirac-inspired view , 2006 .

[3]  Nicolaas P. Landsman,et al.  Mathematical Topics Between Classical and Quantum Mechanics , 1998 .

[4]  P. Dirac Quantised Singularities in the Electromagnetic Field , 1931 .

[5]  A. Perelomov,et al.  Classical integrable finite-dimensional systems related to Lie algebras , 1981 .

[6]  S. Woronowicz Twisted SU (2) group. An example of a non-commutative differential calculus , 1987 .

[8]  S. Chaturvedi,et al.  Ray space ‘Riccati’ evolution and geometric phases for N-level quantum systems , 2007, 0706.0964.

[9]  On the self-adjointness of certain reduced laplace-beltrami operators , 2007, 0707.2708.

[10]  S. Lie,et al.  Vorlesungen über continuierliche Gruppen mit geometrischen und anderen Anwendungen / Sophus Lie ; bearbeitet und herausgegeben von Georg Scheffers. , 1893 .

[11]  R. Palais A Global Formulation of the Lie Theory of Transformation Groups , 1957 .

[12]  Generalized Reduction Procedure: Symplectic and Poisson Formalism , 1993, hep-th/9307018.

[13]  R. López-Peña,et al.  Wigner’s problem for a precessing magnetic dipole , 1997 .

[14]  Infinitely many star products to play with , 2001, hep-th/0112092.

[15]  REDUCTION AND UNFOLDING FOR QUANTUM SYSTEMS: THE HYDROGEN ATOM , 2005, math-ph/0504033.

[16]  R. V. Gamkrelidze,et al.  Basic ideas and concepts of differential geometry , 1991 .

[17]  L. Fehér,et al.  Hamiltonian reductions of free particles under polar actions of compact Lie groups , 2007, 0705.1998.

[18]  GLOBAL THEORY OF QUANTUM BOUNDARY CONDITIONS AND TOPOLOGY CHANGE , 2004, hep-th/0403048.

[19]  B. Skagerstam,et al.  Magnetic Monopoles With No Strings , 1980 .

[20]  P. Dirac On the Analogy Between Classical and Quantum Mechanics , 1945 .

[21]  G. M.,et al.  Theory of Differential Equations , 1902, Nature.

[22]  Tullio Levi-Civita,et al.  Lezioni Di Meccanica Razionale ... , 2006 .

[23]  V. Man'ko,et al.  GENERALIZED REDUCTION PROCEDURE AND NONLINEAR NONSTATIONARY DYNAMICAL SYSTEMS , 1992 .

[24]  REDUCTION AND UNFOLDING: THE KEPLER PROBLEM , 2004, math-ph/0411014.

[25]  Quantization on a Lie Group: Higher-Order Polarizations , 1997, physics/9710002.

[26]  L. Pizzocchero,et al.  A FUNCTIONAL REPRESENTATION FOR NON-COMMUTATIVE C*-ALGEBRAS , 1994 .

[27]  Johannes J. Duistermaat,et al.  On global action‐angle coordinates , 1980 .

[28]  G. Landi,et al.  Algebraic differential calculus for gauge theories , 1990 .

[29]  A. Perelomov,et al.  On the geometry of Lie algebras and Poisson tensors , 1994 .

[30]  G. Marmo,et al.  The inverse problem in the calculus of variations and the geometry of the tangent bundle , 1990 .

[31]  J. Klauder,et al.  Classical symptoms of quantum illnesses , 1993 .

[32]  A. R. Forsyth Theory of Differential Equations , 1961 .

[33]  Lie algebraic characterization of manifolds , 2003, math/0310202.

[34]  G. Marmo,et al.  Space-time orientations and maxwell's equations* , 2005, 0708.3543.

[35]  G. Vilasi,et al.  GEOMETRICAL ASPECTS OF MIXED TORSIONLESS TENSOR FIELDS , 2006 .

[36]  B. Skagerstam,et al.  Gauge Symmetries and Fibre Bundles: Applications To Particle Dynamics , 1983, 1702.08910.

[37]  Henri Français Remarques sur une expérience de M. Birkeland , 1896 .

[38]  Geometric Hamilton-Jacobi theory , 2006, math-ph/0604063.

[39]  W. Heitler The Principles of Quantum Mechanics , 1947, Nature.

[40]  A GENERALIZED REDUCTION PROCEDURE FOR DYNAMICAL SYSTEMS , 1991 .

[41]  Noncommutative differential calculus for Moyal subalgebras , 2004, hep-th/0411223.

[42]  S. Weinberg Testing quantum mechanics , 1989 .

[43]  A. Kirillov Merits and demerits of the orbit method , 1999 .

[44]  G. Marmo,et al.  From Classical to Quantum Mechanics: An Introduction to the Formalism, Foundations and Applications , 2004 .

[45]  Livio Pizzocchero,et al.  Quantum mechanics as an infinite‐dimensional Hamiltonian system with uncertainty structure: Part II , 1990 .

[46]  Eugene J. Saletan,et al.  Dynamical Systems: A Differential Geometric Approach to Symmetry and Reduction , 1985 .

[47]  G. Marmo,et al.  Geometrization of quantum mechanics , 2007, math-ph/0701053.

[48]  G. Marmo,et al.  Reduction of Jacobi manifolds , 1997 .

[49]  A Class of Calogero Type Reductions of Free Motion on a Simple Lie Group , 2006, math-ph/0609085.

[50]  Automorphisms of quantum and classical Poisson algebras , 2002, Compositio Mathematica.