A block Wiedemann rank algorithm

This paper makes two contributions to block Wiedemann algorithms. We describe how to compute the minimal generating matrix polynomial using Beckermann and Labahn's Fast Power Hermite-Padé Solver, and we develop a block Monte Carlo method to compute rank of a black box matrix over a large field by extending the Kaltofen-Saunders black box matrix rank algorithm.

[1]  V. Popov Some properties of the control systems with irreducible matrix — Transfer functions , 1970 .

[2]  B. D. Saunders,et al.  Efficient matrix preconditioners for black box linear algebra , 2002 .

[3]  D. Coppersmith Solving homogeneous linear equations over GF (2) via block Wiedemann algorithm , 1994 .

[4]  Erich Kaltofen,et al.  On Wiedemann's Method of Solving Sparse Linear Systems , 1991, AAECC.

[5]  Erich Kaltofen,et al.  ON THE COMPLEXITY OF COMPUTING DETERMINANTS , 2001 .

[6]  Richard Zippel,et al.  Interpolating Polynomials from Their Values , 1990, J. Symb. Comput..

[7]  Adhemar Bultheel,et al.  The computation of non-perfect Padé-Hermite approximants , 2005, Numerical Algorithms.

[8]  Erich Kaltofen,et al.  LINBOX: A GENERIC LIBRARY FOR EXACT LINEAR ALGEBRA , 2002 .

[9]  Gilles Villard,et al.  Solving sparse rational linear systems , 2006, ISSAC '06.

[10]  E. Kaltofen Analysis of Coppersmith's block Wiedemann algorithm for the parallel solution of sparse linear systems , 1995 .

[11]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[12]  Gilles Villard,et al.  Processor Efficient Parallel Solution of Linear Systems of Equations , 2000, J. Algorithms.

[13]  G. Villard A study of Coppersmith's block Wiedemann algorithm using matrix polynomials , 1997 .

[14]  E. Kaltofen,et al.  ON THE COMPLEXITY OF COMPUTING DETERMINANTS* (Extended abstract) , 2001 .

[15]  Claude-Pierre Jeannerod,et al.  On the complexity of polynomial matrix computations , 2003, ISSAC '03.

[16]  Wayne Eberly,et al.  Reliable Krylov-based algorithms for matrix null space and rank , 2004, ISSAC '04.

[17]  Gilles Villard,et al.  Further analysis of Coppersmith's block Wiedemann algorithm for the solution of sparse linear systems (extended abstract) , 1997, ISSAC.

[18]  B. Beckermann,et al.  A Uniform Approach for the Fast Computation of Matrix-Type Padé Approximants , 1994, SIAM J. Matrix Anal. Appl..

[19]  B. David Saunders,et al.  MATRIX RANK CERTIFICATION , 2004 .

[20]  George Labahn,et al.  A uniform approach for Hermite Padé and simultaneous Padé approximants and their matrix-type generalizations , 1992, Numerical Algorithms.

[21]  Douglas H. Wiedemann Solving sparse linear equations over finite fields , 1986, IEEE Trans. Inf. Theory.

[22]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[23]  Victor Y. Pan,et al.  Processor efficient parallel solution of linear systems over an abstract field , 1991, SPAA '91.

[24]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[25]  Erich Kaltofen,et al.  Black box linear algebra with the linbox library , 2002 .