Hybrid Dynamic Optimization Methods for Systems Biology with Efficient Sensitivities

In recent years, model optimization in the field of computational biology has become a prominent area for development of pharmaceutical drugs. The increased amount of experimental data leads to the increase in complexity of proposed models. With increased complexity comes a necessity for computational algorithms that are able to handle the large datasets that are used to fit model parameters. In this study the ability of simultaneous, hybrid simultaneous, and sequential algorithms are tested on two models representative of computational systems biology. The first case models the cells affected by a virus in a population and serves as a benchmark model for the proposed hybrid algorithm. The second model is the ErbB model and shows the ability of the hybrid sequential and simultaneous method to solve large-scale biological models. Post-processing analysis reveals insights into the model formulation that are important for understanding the specific parameter optimization. A parameter sensitivity analysis reveals shortcomings and difficulties in the ErbB model parameter optimization due to the model formulation rather than the solver capacity. Suggested methods are model reformulation to improve input-to-output model linearity, sensitivity ranking, and choice of solver.

[1]  John T. Betts,et al.  Practical Methods for Optimal Control and Estimation Using Nonlinear Programming , 2009 .

[2]  K. McAuley,et al.  Mean Square Error Based Method for Parameter Ranking and Selection To Obtain Accurate Predictions at Specified Operating Conditions , 2014 .

[3]  Randal W. Beard,et al.  Parameter estimation for towed cable systems using moving horizon estimation , 2015, IEEE Transactions on Aerospace and Electronic Systems.

[4]  Carl D. Laird,et al.  Interior-Point Methods for Estimating Seasonal Parameters in Discrete-Time Infectious Disease Models , 2013, PloS one.

[5]  Thomas F. Edgar,et al.  Constrained Nonlinear Estimation for Industrial Process Fouling , 2010 .

[6]  William W. Hager,et al.  Runge-Kutta methods in optimal control and the transformed adjoint system , 2000, Numerische Mathematik.

[7]  David D. Morrison,et al.  Multiple shooting method for two-point boundary value problems , 1962, CACM.

[8]  Carmen G. Moles,et al.  Parameter estimation in biochemical pathways: a comparison of global optimization methods. , 2003, Genome research.

[9]  M. Nowak,et al.  Virus dynamics: Mathematical principles of immunology and virology , 2001 .

[10]  Xuejin Yang,et al.  Advances in sensitivity-based nonlinear model predictive control and dynamic real-time optimization , 2015 .

[11]  Julio R. Banga,et al.  Simultaneous model discrimination and parameter estimation in dynamic models of cellular systems , 2013, BMC Systems Biology.

[12]  Ursula Klingmüller,et al.  Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood , 2009, Bioinform..

[13]  M. Diehl,et al.  Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations , 2000 .

[14]  J. Betts,et al.  Application of sparse nonlinear programming to trajectory optimization , 1992 .

[15]  Seyed Mostafa Safdarnejad,et al.  Initialization strategies for optimization of dynamic systems , 2015, Comput. Chem. Eng..

[16]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[17]  L. Petzold A description of dassl: a differential/algebraic system solver , 1982 .

[18]  M. Gabriela M. Gomes,et al.  A Bayesian Framework for Parameter Estimation in Dynamical Models , 2011, PloS one.

[19]  Kody M. Powell,et al.  Nonlinear modeling, estimation and predictive control in APMonitor , 2014, Comput. Chem. Eng..

[20]  L. Biegler,et al.  Control and Optimization with Differential-Algebraic Constraints , 2012 .

[21]  G. Reddien Collocation at Gauss Points as a Discretization in Optimal Control , 1979 .

[22]  Uri M. Ascher,et al.  Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .

[23]  Seyed Mostafa Safdarnejad,et al.  Plant-level Dynamic Optimization of Cryogenic Carbon Capture with Conventional and Renewable Power Sources , 2015 .

[24]  John D. Hedengren,et al.  Model predictive control with a rigorous model of a Solid Oxide Fuel Cell , 2013, 2013 American Control Conference.

[25]  Peter Piela Ascend: an object-oriented computer environment for modeling and analysis , 1989 .

[26]  B. Finlayson,et al.  Orthogonal collocation on finite elements , 1975 .

[27]  Zoltan K. Nagy,et al.  Swelling Constrained Control of an Industrial Batch Reactor Using a Dedicated NMPC Environment: OptCon , 2009 .

[28]  H. Bock,et al.  A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems , 1984 .

[29]  L. Biegler An overview of simultaneous strategies for dynamic optimization , 2007 .

[30]  Lorenz T. Biegler,et al.  Optimization Strategies for Dynamic Systems , 2009, Encyclopedia of Optimization.

[31]  Christopher R. Myers,et al.  Universally Sloppy Parameter Sensitivities in Systems Biology Models , 2007, PLoS Comput. Biol..

[32]  Shengtai Li,et al.  Sensitivity analysis of differential-algebraic equations and partial differential equations , 2005, Comput. Chem. Eng..

[33]  Carol S. Woodward,et al.  Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..

[34]  B. Kholodenko,et al.  Ligand-dependent responses of the ErbB signaling network: experimental and modeling analyses , 2007, Molecular systems biology.

[35]  Wolfgang Marquardt,et al.  Dynamic optimization using adaptive direct multiple shooting , 2014, Comput. Chem. Eng..

[36]  Hiroaki Kitano,et al.  The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models , 2003, Bioinform..

[37]  R. Sargent,et al.  Solution of a Class of Multistage Dynamic Optimization Problems. 2. Problems with Path Constraints , 1994 .

[38]  H. Bock,et al.  Recent Advances in Parameteridentification Techniques for O.D.E. , 1983 .

[39]  J. E. Cuthrell,et al.  Simultaneous optimization and solution methods for batch reactor control profiles , 1989 .

[40]  Chang-Bock Chung Sensitivity behavior analysis in distributed parameter estimation , 1991 .

[41]  Chao Lin,et al.  A Multi-Variant, Viral Dynamic Model of Genotype 1 HCV to Assess the in vivo Evolution of Protease-Inhibitor Resistant Variants , 2010, PLoS Comput. Biol..

[42]  John D. Hedengren,et al.  An Optimized Simulation Model for Iron-Based Fischer-Tropsch Catalyst Design: Transfer Limitations as Functions of Operating and Design Conditions , 2015 .

[43]  M. A. Latifi,et al.  A MATLAB PACKAGE FOR ORTHOGONAL COLLOCATIONS ON FINITE ELEMENTS IN DYNAMIC OPTIMISATION , 2005 .

[44]  Wolfgang Dahmen,et al.  Introduction to Model Based Optimization of Chemical Processes on Moving Horizons , 2001 .

[45]  A. Laub,et al.  The singular value decomposition: Its computation and some applications , 1980 .

[46]  Lorenz T. Biegler,et al.  Dynamic optimization of HIPS open-loop unstable polymerization reactors , 2005 .

[47]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[48]  L. Biegler,et al.  Advances in simultaneous strategies for dynamic process optimization , 2002 .

[49]  Mustafa Khammash,et al.  Parameter Estimation and Model Selection in Computational Biology , 2010, PLoS Comput. Biol..

[50]  J. Banga,et al.  Structural Identifiability of Systems Biology Models: A Critical Comparison of Methods , 2011, PloS one.

[51]  Moritz Diehl,et al.  ACADO toolkit—An open‐source framework for automatic control and dynamic optimization , 2011 .

[52]  Joaquín Míguez,et al.  Analysis of a sequential Monte Carlo method for optimization in dynamical systems , 2010, Signal Process..

[53]  Peter Deuflhard,et al.  Numerical Treatment of Inverse Problems in Differential and Integral Equations: Proceedings of an International Workshop, Heidelberg, Fed. Rep. of Germany, August 30 - September 3, 1982 , 2012 .

[54]  O. A. Asbjornsen,et al.  Simultaneous optimization and solution of systems described by differential/algebraic equations , 1987 .

[55]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[56]  Zoltan K. Nagy,et al.  Evaluation study of an efficient output feedback nonlinear model predictive control for temperature tracking in an industrial batch reactor , 2007 .

[57]  H. Lane,et al.  ERBB Receptors and Cancer: The Complexity of Targeted Inhibitors , 2005, Nature Reviews Cancer.

[58]  L. Biegler,et al.  A quasi‐sequential approach to large‐scale dynamic optimization problems , 2006 .

[59]  Kody M. Powell,et al.  Dynamic optimization of a solar thermal energy storage system over a 24 hour period using weather forecasts , 2013, 2013 American Control Conference.

[60]  Lorenz T. Biegler,et al.  Convergence rates for direct transcription of optimal control problems using collocation at Radau points , 2008, Comput. Optim. Appl..

[61]  Lorenz T. Biegler,et al.  Decomposition algorithms for on-line estimation with nonlinear models , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[62]  Lorenz T. Biegler,et al.  Simultaneous dynamic optimization strategies: Recent advances and challenges , 2006, Comput. Chem. Eng..

[63]  Paul I. Barton,et al.  Dynamic Optimization in a Discontinuous World , 1998 .

[64]  Antonis Papachristodoulou,et al.  Model decomposition and reduction tools for large-scale networks in systems biology , 2011, Autom..

[65]  Randal W. Beard,et al.  Optimal Trajectory Generation Using Model Predictive Control for Aerially Towed Cable Systems , 2014 .

[66]  Lorenz T. Biegler,et al.  Advantages of Nonlinear-Programming-Based Methodologies for Inequality Path-Constrained Optimal Control Problems - A Numerical Study , 2008, SIAM J. Sci. Comput..

[67]  Isak Nielsen Modeling and Control of Friction Stir Welding in 5 cm thick Copper Canisters , 2012 .

[68]  Karl-Erik Årzén,et al.  Modeling and optimization with Optimica and JModelica.org - Languages and tools for solving large-scale dynamic optimization problems , 2010, Comput. Chem. Eng..

[69]  Edda Klipp,et al.  Monte Carlo analysis of an ODE Model of the Sea Urchin Endomesoderm Network Supplementary Table 1: Differential Equations , 2009 .

[70]  Lorenz T. Biegler,et al.  Parameter Estimation in Batch Bioreactor Simulation Using Metabolic Models: Sequential Solution with Direct Sensitivities , 2011 .

[71]  Kody M. Powell,et al.  Dynamic Optimization of a Hybrid Solar Thermal and Fossil Fuel System , 2014 .

[72]  L. Lasdon,et al.  Efficient data reconciliation and estimation for dynamic processes using nonlinear programming techniques , 1992 .

[73]  L. Biegler,et al.  Nonlinear Programming Strategies for State Estimation and Model Predictive Control , 2009 .

[74]  Hyun-soo Cho,et al.  Structure of the Extracellular Region of HER3 Reveals an Interdomain Tether , 2002, Science.

[75]  L. Biegler,et al.  Decomposition algorithms for on-line estimation with nonlinear DAE models , 1995 .

[76]  L. Biegler,et al.  A reduced space interior point strategy for optimization of differential algebraic systems , 2000 .

[77]  George M. Siouris,et al.  Applied Optimal Control: Optimization, Estimation, and Control , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[78]  D. Lauffenburger,et al.  Input–output behavior of ErbB signaling pathways as revealed by a mass action model trained against dynamic data , 2009, Molecular systems biology.