A redox switch regulates the structure and function of anti-apoptotic BFL-1

[1]  H. Seo,et al.  Identification of a Covalent Molecular Inhibitor of Anti-apoptotic BFL-1 by Disulfide Tethering. , 2020, Cell chemical biology.

[2]  L. Walensky,et al.  Site-Dependent Cysteine Lipidation Potentiates the Activation of Proapoptotic BAX , 2020, Cell reports.

[3]  Martin Eisenacher,et al.  The PRIDE database and related tools and resources in 2019: improving support for quantification data , 2018, Nucleic Acids Res..

[4]  K. Stegmaier,et al.  Precision Targeting of BFL-1/A1 and an ATM Co-dependency in Human Cancer. , 2018, Cell reports.

[5]  A. López-Guillermo,et al.  The BET bromodomain inhibitor CPI203 overcomes resistance to ABT-199 (venetoclax) by downregulation of BFL-1/A1 in in vitro and in vivo models of MYC+/BCL2+ double hit lymphoma , 2018, Oncogene.

[6]  H. Seo,et al.  Crystal Structures of Anti-apoptotic BFL-1 and Its Complex with a Covalent Stapled Peptide Inhibitor. , 2018, Structure.

[7]  D. Green,et al.  MOMP, cell suicide as a BCL-2 family business. , 2018 .

[8]  D. Green,et al.  MOMP, cell suicide as a BCL-2 family business , 2017, Cell Death and Differentiation.

[9]  R. Sitia,et al.  Cysteines as Redox Molecular Switches and Targets of Disease , 2017, Front. Mol. Neurosci..

[10]  E. Weerapana,et al.  From structure to redox: The diverse functional roles of disulfides and implications in disease , 2017, Proteomics.

[11]  A. Strasser,et al.  Characterisation of mice lacking all functional isoforms of the pro-survival BCL-2 family member A1 reveals minor defects in the haematopoietic compartment , 2017, Cell Death and Differentiation.

[12]  A. Strasser,et al.  The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models , 2016, Nature.

[13]  L. Walensky,et al.  Selective Covalent Targeting of Anti-Apoptotic BFL-1 by Cysteine-Reactive Stapled Peptide Inhibitors. , 2016, Cell chemical biology.

[14]  L. Walensky,et al.  Allosteric Inhibition of Anti-Apoptotic MCL-1 , 2016, Nature Structural &Molecular Biology.

[15]  A. Bobkov,et al.  Conformation of BCL-XL upon Membrane Integration. , 2015, Journal of molecular biology.

[16]  M. A. Wouters,et al.  Potential role of glutathione in evolution of thiol-based redox signaling sites in proteins , 2015, Frontiers in Pharmacology.

[17]  L. Walensky,et al.  Inhibition of Pro-apoptotic BAX by a noncanonical interaction mechanism. , 2015, Molecular cell.

[18]  Yang Zhang,et al.  The I-TASSER Suite: protein structure and function prediction , 2014, Nature Methods.

[19]  S. Nussberger,et al.  S-palmitoylation represents a novel mechanism regulating the mitochondrial targeting of BAX and initiation of apoptosis , 2014, Cell Death and Disease.

[20]  Peter E. Czabotar,et al.  Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy , 2013, Nature Reviews Molecular Cell Biology.

[21]  Liying Wang,et al.  Regulation of apoptosis by Bcl-2 cysteine oxidation in human lung epithelial cells , 2013, Molecular biology of the cell.

[22]  Jun S. Song,et al.  BCL2A1 is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition , 2013, Proceedings of the National Academy of Sciences.

[23]  L. Walensky,et al.  Direct activation of full-length proapoptotic BAK , 2013, Proceedings of the National Academy of Sciences.

[24]  L. Lam,et al.  ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets , 2013, Nature Medicine.

[25]  J. Opferman,et al.  A competitive stapled peptide screen identifies a selective small molecule that overcomes MCL-1-dependent leukemia cell survival. , 2012, Chemistry & biology.

[26]  A. Villunger,et al.  A1/Bfl-1 in leukocyte development and cell death , 2012, Experimental cell research.

[27]  L. Walensky,et al.  BAX unleashed: the biochemical transformation of an inactive cytosolic monomer into a toxic mitochondrial pore. , 2011, Trends in biochemical sciences.

[28]  Nico Tjandra,et al.  Bcl-xL Retrotranslocates Bax from the Mitochondria into the Cytosol , 2011, Cell.

[29]  D. Andrews,et al.  Still embedded together binding to membranes regulates Bcl-2 protein interactions , 2010, Oncogene.

[30]  Y. Ron,et al.  Defective ubiquitin-mediated degradation of antiapoptotic Bfl-1 predisposes to lymphoma. , 2010, Blood.

[31]  Derek W. Yecies,et al.  Acquired resistance to ABT-737 in lymphoma cells that up-regulate MCL-1 and BFL-1. , 2010, Blood.

[32]  Yang Zhang,et al.  I-TASSER: a unified platform for automated protein structure and function prediction , 2010, Nature Protocols.

[33]  Derek Y. Chiang,et al.  The landscape of somatic copy-number alteration across human cancers , 2010, Nature.

[34]  R. Haser,et al.  C-terminal Residues Regulate Localization and Function of the Antiapoptotic Protein Bfl-1* , 2009, The Journal of Biological Chemistry.

[35]  D. Andrews,et al.  Membrane Binding by tBid Initiates an Ordered Series of Events Culminating in Membrane Permeabilization by Bax , 2008, Cell.

[36]  Pär Nordlund,et al.  Completing the family portrait of the anti‐apoptotic Bcl‐2 proteins: Crystal structure of human Bfl‐1 in complex with Bim , 2008, FEBS letters.

[37]  P. Petit,et al.  Cysteine 62 of Bax Is Critical for Its Conformational Activation and Its Proapoptotic Activity in Response to H2O2-induced Apoptosis* , 2008, Journal of Biological Chemistry.

[38]  A. Letai,et al.  Regulation of Bcl-2 family proteins by posttranslational modifications. , 2008, Current molecular medicine.

[39]  Yang Zhang,et al.  I-TASSER server for protein 3D structure prediction , 2008, BMC Bioinformatics.

[40]  P. Ekert,et al.  Programmed Anuclear Cell Death Delimits Platelet Life Span , 2007, Cell.

[41]  Liying Wang,et al.  S-Nitrosylation of Bcl-2 Inhibits Its Ubiquitin-Proteasomal Degradation , 2006, Journal of Biological Chemistry.

[42]  S. Korsmeyer,et al.  A stapled BID BH3 helix directly binds and activates BAX. , 2006, Molecular cell.

[43]  Xiaodong Wang,et al.  Mule/ARF-BP1, a BH3-Only E3 Ubiquitin Ligase, Catalyzes the Polyubiquitination of Mcl-1 and Regulates Apoptosis , 2005, Cell.

[44]  S. Korsmeyer,et al.  An inhibitor of Bcl-2 family proteins induces regression of solid tumours , 2005, Nature.

[45]  K. Gehring,et al.  Solution Structure of Human BCL-w , 2003, Journal of Biological Chemistry.

[46]  M. Lackmann,et al.  The structure of Bcl‐w reveals a role for the C‐terminal residues in modulating biological activity , 2003, The EMBO journal.

[47]  S. Korsmeyer,et al.  Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. , 2002, Cancer cell.

[48]  Nico Tjandra,et al.  Structure of Bax Coregulation of Dimer Formation and Intracellular Localization , 2000, Cell.

[49]  S. Korsmeyer,et al.  Mutagenesis of the BH3 Domain of BAX Identifies Residues Critical for Dimerization and Killing , 1998, Molecular and Cellular Biology.

[50]  Junying Yuan,et al.  Cleavage of BID by Caspase 8 Mediates the Mitochondrial Damage in the Fas Pathway of Apoptosis , 1998, Cell.

[51]  R. Meadows,et al.  Structure of Bcl-xL-Bak Peptide Complex: Recognition Between Regulators of Apoptosis , 1997, Science.

[52]  F. Bernal,et al.  Dissection of the BCL-2 family signaling network with stabilized alpha-helices of BCL-2 domains. , 2008, Methods in enzymology.

[53]  Peer Bork,et al.  Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation , 2007, Bioinform..

[54]  T. Wales,et al.  Hydrogen exchange mass spectrometry for the analysis of protein dynamics. , 2006, Mass spectrometry reviews.