Integrated gallium phosphide nonlinear photonics

[1]  T. Kippenberg,et al.  Microresonator-Based Optical Frequency Combs , 2011, Science.

[2]  M. Gorodetsky,et al.  Mode spectrum and temporal soliton formation in optical microresonators. , 2013, Physical review letters.

[3]  Huang,et al.  Calculation of optical excitations in cubic semiconductors. III. Third-harmonic generation. , 1993, Physical review. B, Condensed matter.

[4]  M. H. Pilkuhn,et al.  Green luminescence from solution-grown junctions in GaP containing shallow donors and acceptors , 1966 .

[5]  L. Czornomaz,et al.  Highly selective dry etching of GaP in the presence of AlxGa1–xP with a SiCl4/SF6 plasma , 2018, 1801.06469.

[6]  Zach DeVito,et al.  Opt , 2017 .

[7]  K. Vahala,et al.  Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. , 2004, Physical review letters.

[8]  F. Raineri,et al.  GaInP on oxide nonlinear photonic crystal technology. , 2017, Optics letters.

[9]  Fariba Hatami,et al.  Efficient extraction of zero-phonon-line photons from single nitrogen-vacancy centers in an integrated GaP-on-diamond platform , 2016, 1606.01826.

[10]  Roberto Morandotti,et al.  CMOS-compatible integrated optical hyper-parametric oscillator , 2010 .

[11]  Mihaela Dinu,et al.  Third-order nonlinearities in silicon at telecom wavelengths , 2003 .

[12]  Chang-lei Wang,et al.  Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm , 2010 .

[13]  Huang,et al.  Calculation of optical excitations in cubic semiconductors. II. Second-harmonic generation. , 1993, Physical review. B, Condensed matter.

[14]  Jelena Vucković,et al.  Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power. , 2009, Optics express.

[15]  Michal Lipson,et al.  Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold , 2017 .

[16]  M. Lipson,et al.  Ultrabroadband supercontinuum generation in a CMOS-compatible platform. , 2012, Optics letters.

[17]  Xiaoxiao Xue,et al.  Second-harmonic-assisted four-wave mixing in chip-based microresonator frequency comb generation , 2016, Light: Science & Applications.

[18]  E. Semenova,et al.  AlGaAs-On-Insulator Nonlinear Photonics , 2015, 1509.03620.

[19]  Michal Lipson,et al.  Silicon-chip mid-infrared frequency comb generation , 2014, Nature Communications.

[20]  Kerry J. Vahala,et al.  Controlled transition between parametric and Raman oscillations in ultrahigh-Q silica toroidal microcavities , 2005 .

[21]  Kerry J. Vahala,et al.  Observation of Kerr nonlinearity in microcavities at room temperature. , 2005 .

[22]  H. Mori,et al.  New hydride vapor phase epitaxy for GaP growth on Si , 1987 .

[23]  D. Skryabin,et al.  Colloquium: Looking at a soliton through the prism of optical supercontinuum , 2010, 1005.2777.

[24]  Yi Li,et al.  Bridging the Gap between Dielectric Nanophotonics and the Visible Regime with Effectively Lossless Gallium Phosphide Antennas. , 2017, Nano letters.

[25]  T. Kippenberg,et al.  Optical frequency comb generation from a monolithic microresonator , 2007, Nature.

[26]  Optomechanics with one-dimensional gallium phosphide photonic crystal cavities , 2018, Optica.

[27]  Jonathan Y. Lee,et al.  Optical Kerr nonlinearity in a high-Q silicon carbide microresonator. , 2014, Optics express.

[28]  Martin M. Fejer,et al.  Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared , 2007 .

[29]  Katharina Schneider,et al.  Gallium Phosphide-on-Silicon Dioxide Photonic Devices , 2018, Journal of Lightwave Technology.

[30]  D. E. Chang,et al.  Subwavelength vacuum lattices and atom–atom interactions in two-dimensional photonic crystals , 2014, Nature Photonics.

[31]  S. P. DenBaars,et al.  Third harmonic generation microscopy of GaN , 2000, Conference Digest. 2000 International Quantum Electronics Conference (Cat. No.00TH8504).

[32]  P. Barclay,et al.  Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks , 2015, 1508.06970.

[33]  J. Nishizawa,et al.  Spontaneous Raman scattering in [100], [110], and [11-2] directional GaP waveguides , 2001 .

[34]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[35]  T. Herr Solitons and dynamics of frequency comb formation in optical microresonators , 2013 .

[36]  C. Xiong,et al.  Optical frequency comb generation from aluminum nitride microring resonator. , 2013, Optics letters.

[37]  Dirk Englund,et al.  Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity. , 2010, Nano letters.

[38]  Michal Lipson,et al.  Breaking the Loss Limitation of On-chip High-confinement Resonators , 2016, 1609.08699.

[39]  M. Lipson,et al.  Competition between Raman and Kerr effects in microresonator comb generation. , 2017, Optics letters.

[40]  T. Kippenberg,et al.  Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state. , 2016, Optics express.

[41]  I. Sagnes,et al.  Nonlinear gallium phosphide nanoscale photonics [Invited] , 2018 .

[42]  H. Tang,et al.  High-fidelity cavity soliton generation in crystalline AlN micro-ring resonators. , 2018, Optics letters.

[43]  Physical Review Letters 63 , 1989 .

[44]  Xiang Guo,et al.  Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator , 2014 .

[45]  Marko Loncar,et al.  Diamond nonlinear photonics , 2014, Nature Photonics.

[46]  D. Englund,et al.  A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array , 2012 .

[47]  B. Watrasiewicz Quantum electronics conference , 1968 .

[48]  B. Ilic,et al.  Interlocking Kerr-microresonator frequency combs for microwave to optical synthesis. , 2018, Optics letters.

[49]  N. Yu,et al.  Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators , 2010 .

[50]  M. Gorodetsky,et al.  Temporal solitons in optical microresonators , 2012, Nature Photonics.

[51]  Andrew G. Glen,et al.  APPL , 2001 .

[52]  P. Alam ‘L’ , 2021, Composites Engineering: An A–Z Guide.

[53]  O. Durand,et al.  Second harmonic generation in gallium phosphide microdisks on silicon: from strict 4 ¯ to random quasi-phase matching , 2017 .

[54]  Raymond G. Beausoleil,et al.  Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond , 2009 .

[55]  P. Barclay,et al.  Cavity optomechanics in gallium phosphide microdisks , 2013, 1309.6300.

[56]  J. Vučković,et al.  Gallium phosphide photonic crystal nanocavities in the visible , 2008, LEOS 2008 - 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society.

[57]  Yuncheng Song,et al.  Waveguide-integrated single-crystalline GaP resonators on diamond. , 2014, Optics express.

[58]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[59]  M. Gorodetsky,et al.  Universal formation dynamics and noise of Kerr-frequency combs in microresonators , 2012, Nature Photonics.

[60]  H. Tang,et al.  Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency , 2016 .

[61]  E. Semenova,et al.  Efficient frequency comb generation in AlGaAs-on-insulator , 2016 .