Robust Visual Tracking via Multiple Kernel Boosting With Affinity Constraints

We propose a novel algorithm by extending the multiple kernel learning framework with boosting for an optimal combination of features and kernels, thereby facilitating robust visual tracking in complex scenes effectively and efficiently. While spatial information has been taken into account in conventional multiple kernel learning algorithms, we impose novel affinity constraints to exploit the locality of support vectors from a different view. In contrast to existing methods in the literature, the proposed algorithm is formulated in a probabilistic framework that can be computed efficiently. Numerous experiments on challenging data sets with comparisons to state-of-the-art algorithms demonstrate the merits of the proposed algorithm using multiple kernel boosting and affinity constraints.

[1]  Andrea Vedaldi,et al.  Vlfeat: an open and portable library of computer vision algorithms , 2010, ACM Multimedia.

[2]  Huchuan Lu,et al.  Superpixel tracking , 2011, 2011 International Conference on Computer Vision.

[3]  Huchuan Lu,et al.  Least Soft-Threshold Squares Tracking , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Patrick Pérez,et al.  Color-Based Probabilistic Tracking , 2002, ECCV.

[6]  Michael J. Black,et al.  EigenTracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation , 1996, International Journal of Computer Vision.

[7]  Trevor Darrell,et al.  Bayesian Localized Multiple Kernel Learning , 2009 .

[8]  Jiebo Luo,et al.  Heterogeneous feature machines for visual recognition , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[9]  권홍우,et al.  Bootstrapping , 2002, ACL.

[10]  Mikhail Belkin,et al.  Beyond the point cloud: from transductive to semi-supervised learning , 2005, ICML.

[11]  Michael I. Jordan,et al.  Multiple kernel learning, conic duality, and the SMO algorithm , 2004, ICML.

[12]  Sebastian Nowozin,et al.  On feature combination for multiclass object classification , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[13]  Huchuan Lu,et al.  This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. IEEE TRANSACTIONS ON IMAGE PROCESSING 1 Online Object Tracking with Sparse Prototypes , 2022 .

[14]  Huchuan Lu,et al.  Human Tracking by Multiple Kernel Boosting with Locality Affinity Constraints , 2010, ACCV.

[15]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[16]  Ming-Hsuan Yang,et al.  Adaptive Probabilistic Visual Tracking with Incremental Subspace Update , 2004, ECCV.

[17]  Avrim Blum,et al.  The Bottleneck , 2021, Monopsony Capitalism.

[18]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[19]  Hanzi Wang,et al.  Graph mode-based contextual kernels for robust SVM tracking , 2011, 2011 International Conference on Computer Vision.

[20]  Philip S. Yu,et al.  A General Model for Multiple View Unsupervised Learning , 2008, SDM.

[21]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[22]  Robert T. Collins,et al.  Likelihood Map Fusion for Visual Object Tracking , 2008, 2008 IEEE Workshop on Applications of Computer Vision.

[23]  David Suter,et al.  Adaptive Object Tracking Based on an Effective Appearance Filter , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Ethem Alpaydin,et al.  Localized multiple kernel learning , 2008, ICML '08.

[25]  Huchuan Lu,et al.  Object tracking by multi-cues spatial pyramid matching , 2010, 2010 IEEE International Conference on Image Processing.

[26]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[27]  Trevor Darrell,et al.  Multi-View Learning in the Presence of View Disagreement , 2008, UAI 2008.

[28]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[29]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[30]  Larry S. Davis,et al.  Combining multiple kernels for efficient image classification , 2009, 2009 Workshop on Applications of Computer Vision (WACV).

[31]  Junzhou Huang,et al.  Robust tracking using local sparse appearance model and K-selection , 2011, CVPR 2011.

[32]  Narendra Ahuja,et al.  Robust Visual Tracking via Structured Multi-Task Sparse Learning , 2012, International Journal of Computer Vision.

[33]  Hanzi Wang,et al.  Incremental Learning of 3D-DCT Compact Representations for Robust Visual Tracking , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Ethem Alpaydin,et al.  Localized algorithms for multiple kernel learning , 2013, Pattern Recognit..

[35]  Ion Muslea,et al.  Active Learning with Multiple Views , 2009, Encyclopedia of Data Warehousing and Mining.

[36]  Haibin Ling,et al.  Robust visual tracking using ℓ1 minimization , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[37]  Wen Gao,et al.  Group-sensitive multiple kernel learning for object categorization , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[38]  Yanxi Liu,et al.  Online selection of discriminative tracking features , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Kuk-Jin Yoon,et al.  Visual Tracking via Adaptive Tracker Selection with Multiple Features , 2012, ECCV.

[40]  Chih-Jen Lin,et al.  Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel , 2003, Neural Computation.

[41]  Junseok Kwon,et al.  Visual tracking decomposition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[42]  David Suter,et al.  A consensus-based method for tracking: Modelling background scenario and foreground appearance , 2007, Pattern Recognit..

[43]  Ming Yang,et al.  Detection driven adaptive multi-cue integration for multiple human tracking , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[44]  Ming-Hsuan Yang,et al.  Visual tracking with online Multiple Instance Learning , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[45]  Narendra Ahuja,et al.  Robust visual tracking via multi-task sparse learning , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[46]  Shai Avidan,et al.  Support vector tracking , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  Hanzi Wang,et al.  Generalized Kernel-Based Visual Tracking , 2009, IEEE Transactions on Circuits and Systems for Video Technology.

[48]  Huchuan Lu,et al.  Robust object tracking via sparsity-based collaborative model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[49]  Shai Avidan,et al.  Ensemble Tracking , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  Qi Zhao,et al.  Co-Tracking Using Semi-Supervised Support Vector Machines , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[51]  Horst Bischof,et al.  On-line Boosting and Vision , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[52]  Huchuan Lu,et al.  Pixel-Wise Spatial Pyramid-Based Hybrid Tracking , 2012, IEEE Transactions on Circuits and Systems for Video Technology.

[53]  Michael Isard,et al.  Contour Tracking by Stochastic Propagation of Conditional Density , 1996, ECCV.

[54]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.