Dynamics of entanglement and the Schmidt gap in a driven light–matter system

The ability to modify light−matter coupling in time (e.g. using external pulses) opens up the exciting possibility of generating and probing new aspects of quantum correlations in many-body light–matter systems. Here we study the impact of such a pulsed coupling on the light–matter entanglement in the Dicke model as well as the respective subsystem quantum dynamics. Our dynamical many-body analysis exploits the natural partition between the radiation and matter degrees of freedom, allowing us to explore time-dependent intra-subsystem quantum correlations by means of squeezing parameters, and the inter-subsystem Schmidt gap for different pulse duration (i.e. ramping velocity) regimes—from the near adiabatic to the sudden quench limits. Our results reveal that both types of quantities indicate the emergence of the superradiant phase when crossing the quantum critical point. In addition, at the end of the pulse light and matter remain entangled even though they become uncoupled, which could be exploited to generate entangled states in non-interacting systems.

[1]  M. Barrett,et al.  Erratum: Realization of the Dicke Model Using Cavity-Assisted Raman Transitions [Phys. Rev. Lett. 113, 020408 (2014)]. , 2017, Physical review letters.

[2]  A. Saguia,et al.  Dynamics of the quantum search and quench-induced first-order phase transitions. , 2017, Physical review. E.

[3]  Neil F. Johnson,et al.  Quantum Hysteresis in Coupled Light-Matter Systems , 2016, Entropy.

[4]  W. Zurek,et al.  Space and time renormalization in phase transition dynamics , 2015, 1510.06132.

[5]  Elisa Ercolessi,et al.  Erratum: Dynamics of entanglement entropy and entanglement spectrum crossing a quantum phase transition [Phys. Rev. B89, 104303 (2014)] , 2015 .

[6]  O. L. Acevedo,et al.  Robust quantum correlations in out-of-equilibrium matter–light systems , 2015, 1504.04260.

[7]  O. L. Acevedo,et al.  Large dynamic light-matter entanglement from driving neither too fast nor too slow , 2015, 1503.05470.

[8]  Fan Zhong,et al.  Scaling of the entanglement spectrum in driven critical dynamics , 2015, 1502.01457.

[9]  A. Hemmerich,et al.  Dynamical phase transition in the open Dicke model , 2014, Proceedings of the National Academy of Sciences.

[10]  C. Hamner,et al.  Dicke-type phase transition in a spin-orbit-coupled Bose–Einstein condensate , 2014, Nature Communications.

[11]  Pasquale Sodano,et al.  An order parameter for impurity systems at quantum criticality , 2014, Nature Communications.

[12]  M. Barrett,et al.  Realization of the Dicke model using cavity-assisted Raman transitions. , 2014, Physical review letters.

[13]  O. L. Acevedo,et al.  New dynamical scaling universality for quantum networks across adiabatic quantum phase transitions. , 2013, Physical review letters.

[14]  G. D. Chiara,et al.  Dynamics of the entanglement spectrum in spin chains , 2013, 1311.5509.

[15]  Elisa Ercolessi,et al.  Dynamics of entanglement entropy and entanglement spectrum crossing a quantum phase transition , 2013, 1311.3612.

[16]  Otfried Guhne,et al.  Scaling of genuine multiparticle entanglement close to a quantum phase transition , 2013, 1309.2217.

[17]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[18]  C. Sabín,et al.  Impurities as a quantum thermometer for a Bose-Einstein condensate , 2013, Scientific Reports.

[19]  A. Sanpera,et al.  Scaling of the entanglement spectrum near quantum phase transitions , 2013, 1302.5285.

[20]  D. Jaksch,et al.  Re-entrance and entanglement in the one-dimensional Bose-Hubbard model , 2012, 1206.0222.

[21]  Jacob M. Taylor,et al.  Circuit quantum electrodynamics with a spin qubit , 2012, Nature.

[22]  F. Nori,et al.  Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems , 2012, 1204.2137.

[23]  A. Houck,et al.  On-chip quantum simulation with superconducting circuits , 2012, Nature Physics.

[24]  F. Nori,et al.  Atomic physics and quantum optics using superconducting circuits , 2011, Nature.

[25]  Alán Aspuru-Guzik,et al.  Quantum simulator of an open quantum system using superconducting qubits: exciton transport in photosynthetic complexes , 2011, New Journal of Physics.

[26]  Sabrina Maniscalco,et al.  Quantifying, characterizing, and controlling information flow in ultracold atomic gases , 2011, 1105.4790.

[27]  F. Brennecke,et al.  Exploring symmetry breaking at the Dicke quantum phase transition. , 2011, Physical review letters.

[28]  A Sanpera,et al.  Entanglement spectrum, critical exponents, and order parameters in quantum spin chains. , 2011, Physical review letters.

[29]  F. Marquardt,et al.  Superradiant phase transitions and the standard description of circuit QED. , 2011, Physical review letters.

[30]  Franco Nori,et al.  Quantum spin squeezing , 2010, 1011.2978.

[31]  E. Solano,et al.  Circuit quantum electrodynamics in the ultrastrong-coupling regime , 2010 .

[32]  C. Ciuti,et al.  No-go theorem for superradiant quantum phase transitions in cavity QED and counter-example in circuit QED. , 2010, Nature communications.

[33]  J. Silva-Valencia,et al.  Block entropy and quantum phase transition in the anisotropic Kondo necklace model , 2010 .

[34]  M. Fleischhauer,et al.  Quantum emitters coupled to surface plasmons of a nanowire: A Green's function approach , 2010, 1002.1419.

[35]  D. Nagy,et al.  Dicke-model phase transition in the quantum motion of a Bose-Einstein condensate in an optical cavity. , 2009, Physical review letters.

[36]  Christine Guerlin,et al.  Dicke quantum phase transition with a superfluid gas in an optical cavity , 2009, Nature.

[37]  Jyrki Piilo,et al.  Measure for the degree of non-markovian behavior of quantum processes in open systems. , 2009, Physical review letters.

[38]  Hui Li,et al.  Entanglement spectrum as a generalization of entanglement entropy: identification of topological order in non-Abelian fractional quantum Hall effect states. , 2008, Physical review letters.

[39]  L. Viña,et al.  Control of non-Markovian effects in the dynamics of polaritons in semiconductor microcavities , 2008, 0803.1159.

[40]  S. Bose,et al.  Single-atom aided probe of the decoherence of a Bose-Einstein condensate , 2008, 0802.3392.

[41]  V. Vedral,et al.  Entanglement in many-body systems , 2007, quant-ph/0703044.

[42]  A. Vezzani,et al.  Ground-state fidelity and bipartite entanglement in the Bose-Hubbard model. , 2006, Physical review letters.

[43]  H. Carmichael,et al.  Proposed Realization of the Dicke-Model Quantum Phase Transition in an Optical Cavity QED System , 2006, quant-ph/0607115.

[44]  P. Zanardi,et al.  Sublattice entanglement and quantum phase transitions in antiferromagnetic spin chains , 2006 .

[45]  Erik S. Sørensen,et al.  Boundary effects in the critical scaling of entanglement entropy in 1D systems. , 2005, Physical review letters.

[46]  E. P. Yukalova,et al.  Atomic squeezing under collective emission , 2004, cond-mat/0412125.

[47]  P. Zanardi,et al.  Sublattice entanglement and quantum phase transitions in antiferromagnetic spin chains , 2004, quant-ph/0407228.

[48]  Daniel A. Lidar,et al.  Quantum phase transitions and bipartite entanglement. , 2004, Physical review letters.

[49]  V. Vuletić,et al.  Observation of collective friction forces due to spatial self-organization of atoms: from Rayleigh to Bragg scattering. , 2003, Physical review letters.

[50]  Hai-Qing Lin,et al.  Entanglement, quantum phase transition, and scaling in the XXZ chain , 2003, quant-ph/0307131.

[51]  B. Sanders,et al.  Spin squeezing and pairwise entanglement for symmetric multiqubit states , 2003, quant-ph/0302014.

[52]  G. Vidal,et al.  Entanglement in quantum critical phenomena. , 2002, Physical review letters.

[53]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[54]  K. Mølmer,et al.  Entangling atoms in bad cavities , 2002, quant-ph/0202073.

[55]  A. Osterloh,et al.  Scaling of entanglement close to a quantum phase transition , 2002, Nature.

[56]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[57]  N. Bigelow Quantum engineering: Squeezing entanglement , 2001, Nature.

[58]  J. Cirac,et al.  Many-particle entanglement with Bose–Einstein condensates , 2000, Nature.

[59]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[60]  Masahito Ueda,et al.  Quantum-Controlled Few-Photon State Generated by Squeezed Atoms , 1997, quant-ph/9708023.

[61]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[62]  Ueda,et al.  Synchronous collapses and revivals of atomic dipole fluctuations and photon Fano factor beyond the standard quantum limit. , 1996, Physical review letters.

[63]  Wineland,et al.  Squeezed atomic states and projection noise in spectroscopy. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[64]  D. Walls Squeezed states of light , 1983, Nature.

[65]  M. Gaudin Diagonalisation d'une classe d'hamiltoniens de spin , 1976 .

[66]  F. T. Hioe Phase Transitions in Some Generalized Dicke Models of Superradiance , 1973 .