Variational Wasserstein Clustering
暂无分享,去创建一个
Yalin Wang | Liang Mi | Wen Zhang | Xianfeng Gu | Yalin Wang | X. Gu | Liang Mi | Wen Zhang
[1] Bruce Fischl,et al. FreeSurfer , 2012, NeuroImage.
[2] Martin J. Graves,et al. MRI from Picture to Proton , 2017 .
[3] Leonidas J. Guibas,et al. The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.
[4] S. Graf,et al. Foundations of Quantization for Probability Distributions , 2000 .
[5] Shing-Tung Yau,et al. Computational Conformal Geometry , 2016 .
[6] Dinh Q. Phung,et al. Multilevel Clustering via Wasserstein Means , 2017, ICML.
[7] Jonathan Richard Shewchuk,et al. Delaunay refinement algorithms for triangular mesh generation , 2002, Comput. Geom..
[8] Chris H. Rycroft. Voro++: a three-dimensional Voronoi cell library in C++ , 2009 .
[9] S. P. Lloyd,et al. Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.
[10] Zhuowen Tu,et al. Wasserstein Introspective Neural Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.
[11] C. Givens,et al. A class of Wasserstein metrics for probability distributions. , 1984 .
[12] Simon Urbanek,et al. Unsupervised clustering of multidimensional distributions using earth mover distance , 2011, KDD.
[13] Mathieu Desbrun,et al. Weighted Triangulations for Geometry Processing , 2014, ACM Trans. Graph..
[14] E. Forgy,et al. Cluster analysis of multivariate data : efficiency versus interpretability of classifications , 1965 .
[15] Wei Zeng,et al. Optimal Mass Transport for Shape Matching and Comparison , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[16] Arthur Cayley,et al. The Collected Mathematical Papers: On Monge's “Mémoire sur la théorie des déblais et des remblais” , 2009 .
[17] Chris H Rycroft,et al. VORO++: a three-dimensional voronoi cell library in C++. , 2009, Chaos.
[18] Pierre Alliez,et al. CGAL - The Computational Geometry Algorithms Library , 2011 .
[19] Alison L Gibbs,et al. On Choosing and Bounding Probability Metrics , 2002, math/0209021.
[20] Y. Brenier. Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .
[21] Hans-Peter Seidel,et al. Animating deformable objects using sparse spacetime constraints , 2014, ACM Trans. Graph..
[22] James Zijun Wang,et al. Fast Discrete Distribution Clustering Using Wasserstein Barycenter With Sparse Support , 2015, IEEE Transactions on Signal Processing.
[23] Guillaume Carlier,et al. Barycenters in the Wasserstein Space , 2011, SIAM J. Math. Anal..
[24] Marco Cuturi,et al. Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.
[25] Nick C Fox,et al. Brain atrophy progression measured from registered serial MRI: Validation and application to alzheimer's disease , 1997, Journal of magnetic resonance imaging : JMRI.
[26] Haibin Ling,et al. An Efficient Earth Mover's Distance Algorithm for Robust Histogram Comparison , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[27] Paul M. Thompson,et al. Volumetric harmonic brain mapping , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).
[28] C. Villani. Topics in Optimal Transportation , 2003 .
[29] Léon Bottou,et al. Wasserstein Generative Adversarial Networks , 2017, ICML.
[30] Nicolas Courty,et al. Domain Adaptation with Regularized Optimal Transport , 2014, ECML/PKDD.
[31] Quentin Mérigot,et al. A Multiscale Approach to Optimal Transport , 2011, Comput. Graph. Forum.
[32] B. Lévy. A Numerical Algorithm for L2 Semi-Discrete Optimal Transport in 3D , 2014, 1409.1279.
[33] Arnaud Doucet,et al. Fast Computation of Wasserstein Barycenters , 2013, ICML.
[34] Sergei Vassilvitskii,et al. k-means++: the advantages of careful seeding , 2007, SODA '07.
[35] Hang Si,et al. TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator , 2015, ACM Trans. Math. Softw..
[36] Hossein Mobahi,et al. Learning with a Wasserstein Loss , 2015, NIPS.
[37] Nicolas Courty,et al. Joint distribution optimal transportation for domain adaptation , 2017, NIPS.
[38] S. Yau,et al. Variational Principles for Minkowski Type Problems, Discrete Optimal Transport, and Discrete Monge-Ampere Equations , 2013, 1302.5472.
[39] Franz Aurenhammer,et al. Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..
[40] L. Kantorovich. On the Translocation of Masses , 2006 .
[41] D. Chand,et al. On Convex Polyhedra , 1970 .