Tight Lower Bounds on Graph Embedding Problems

We prove that unless the Exponential Time Hypothesis (ETH) fails, deciding if there is a homomorphism from graph G to graph H cannot be done in time |V(H)|o(|V(G)|). We also show an exponential-time reduction from Graph Homomorphism to Subgraph Isomorphism. This rules out (subject to ETH) a possibility of |V(H)|o(|V(H)|)-time algorithm deciding if graph G is a subgraph of H. For both problems our lower bounds asymptotically match the running time of brute-force algorithms trying all possible mappings of one graph into another. Thus, our work closes the gap in the known complexity of these fundamental problems. Moreover, as a consequence of our reductions, conditional lower bounds follow for other related problems such as Locally Injective Homomorphism, Graph Minors, Topological Graph Minors, Minimum Distortion Embedding and Quadratic Assignment Problem.

[1]  Jan Kratochvíl,et al.  Exact Algorithms for L(2,1)-Labeling of Graphs , 2009, Algorithmica.

[2]  Mihai Badoiu,et al.  Approximation algorithms for low-distortion embeddings into low-dimensional spaces , 2005, SODA '05.

[3]  Magnus Wahlström New Plain-Exponential Time Classes for Graph Homomorphism , 2009, CSR.

[4]  Ronald V. Book,et al.  Review: Michael R. Garey and David S. Johnson, Computers and intractability: A guide to the theory of $NP$-completeness , 1980 .

[5]  Ge Xia,et al.  Strong computational lower bounds via parameterized complexity , 2006, J. Comput. Syst. Sci..

[6]  A. Sinclair,et al.  Low Distortion Maps Between Point Sets , 2009 .

[7]  Dániel Marx Can you beat treewidth? , 2007, FOCS.

[8]  Michal Pilipczuk,et al.  Everything you always wanted to know about the parameterized complexity of Subgraph Isomorphism (but were afraid to ask) , 2013, STACS.

[9]  Magnus Wahlström,et al.  New Plain-Exponential Time Classes for Graph Homomorphism , 2009, Theory of Computing Systems.

[10]  Russell Impagliazzo,et al.  Complexity of kSAT , 2007 .

[11]  S. Yau Mathematics and its applications , 2002 .

[12]  Paweł Rzewski Exact algorithm for graph homomorphism and locally injective graph homomorphism , 2014 .

[13]  Fedor V. Fomin,et al.  08431 Abstracts Collection - Moderately Exponential Time Algorithms , 2008, Moderately Exponential Time Algorithms.

[14]  Piotr Indyk,et al.  Low-distortion embeddings of general metrics into the line , 2005, STOC '05.

[15]  Russell Impagliazzo,et al.  On the Complexity of k-SAT , 2001, J. Comput. Syst. Sci..

[16]  Jan Kratochvíl,et al.  Fast exact algorithm for L(2, 1)-labeling of graphs , 2011, Theor. Comput. Sci..

[17]  Fedor V. Fomin,et al.  An exact algorithm for minimum distortion embedding , 2009, Theor. Comput. Sci..

[18]  John Michael Robson,et al.  Algorithms for Maximum Independent Sets , 1986, J. Algorithms.

[19]  Andreas Björklund Determinant Sums for Undirected Hamiltonicity , 2014, SIAM J. Comput..

[20]  Fedor V. Fomin,et al.  Exact exponential algorithms , 2013, CACM.

[21]  Prasad Raghavendra,et al.  Optimal algorithms and inapproximability results for every CSP? , 2008, STOC.

[22]  Thore Husfeldt,et al.  Exponential Algorithms: Algorithms and Complexity Beyond Polynomial Time (Dagstuhl Seminar 13331) , 2013, Dagstuhl Reports.

[23]  Patrick Traxler The Time Complexity of Constraint Satisfaction , 2008, IWPEC.

[24]  Andreas Björklund,et al.  Set Partitioning via Inclusion-Exclusion , 2009, SIAM J. Comput..

[25]  Uriel Feige,et al.  Coping with the NP-Hardness of the Graph Bandwidth Problem , 2000, SWAT.

[26]  Martin Grohe,et al.  The complexity of homomorphism and constraint satisfaction problems seen from the other side , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[27]  Jirí Fiala,et al.  Locally constrained graph homomorphisms - structure, complexity, and applications , 2008, Comput. Sci. Rev..

[28]  Dieter Kratsch Moderately Exponential Time Algorithms , 2009 .

[29]  Jan Kratochvíl,et al.  Exact Algorithms for L (2, 1)-Labeling of Graphs , 2007, MFCS.

[30]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[31]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[32]  Michael Sipser,et al.  Introduction to the Theory of Computation , 1996, SIGA.

[33]  M. Held,et al.  A dynamic programming approach to sequencing problems , 1962, ACM National Meeting.

[34]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[35]  Eugene L. Lawler,et al.  A Note on the Complexity of the Chromatic Number Problem , 1976, Inf. Process. Lett..

[36]  Michael R. Fellows,et al.  Distortion is Fixed Parameter Tractable , 2009, TOCT.

[37]  László Lovász,et al.  Large Networks and Graph Limits , 2012, Colloquium Publications.

[38]  Andrzej Lingas,et al.  An exact algorithm for subgraph homeomorphism , 2009, J. Discrete Algorithms.

[39]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[40]  Pawel Rzka.zewski Exact Algorithm for Graph Homomorphism and Locally Injective Graph Homomorphism , 2013 .

[41]  Robert E. Tarjan,et al.  Finding a Maximum Independent Set , 1976, SIAM J. Comput..

[42]  Jaroslav Nesetril,et al.  Graphs and homomorphisms , 2004, Oxford lecture series in mathematics and its applications.

[43]  Jirí Fiala,et al.  Computational Complexity of the Distance Constrained Labeling Problem for Trees (Extended Abstract) , 2008, ICALP.

[44]  Marcin Pilipczuk,et al.  Bandwidth and distortion revisited , 2012, Discret. Appl. Math..

[45]  Vangelis Th. Paschos,et al.  Fast Algorithms for max independent set , 2010, Algorithmica.

[46]  Fedor V. Fomin,et al.  Exact Algorithms for Graph Homomorphisms , 2005, Theory of Computing Systems.

[47]  Omid Amini,et al.  Counting Subgraphs via Homomorphisms , 2009, SIAM J. Discret. Math..

[48]  Dániel Marx,et al.  Lower bounds based on the Exponential Time Hypothesis , 2011, Bull. EATCS.

[49]  Gerhard J. Woeginger,et al.  Exact Algorithms for NP-Hard Problems: A Survey , 2001, Combinatorial Optimization.

[50]  Jaroslav Nesetril,et al.  On the complexity of H-coloring , 1990, J. Comb. Theory, Ser. B.

[51]  Libor Barto,et al.  Graphs, polymorphisms and the complexity of homomorphism problems , 2008, STOC '08.

[52]  Jerrold R. Griggs,et al.  Labelling Graphs with a Condition at Distance 2 , 1992, SIAM J. Discret. Math..

[53]  Jan Kratochvíl,et al.  Fast Exact Algorithm for L(2, 1)-Labeling of Graphs , 2011, TAMC.

[54]  Michal Pilipczuk Lower Bounds Based on the Exponential Time Hypothesis: Edge Clique Cover , 2016, Encyclopedia of Algorithms.

[55]  Per Austrin Towards Sharp Inapproximability For Any 2-CSP , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[56]  David Eppstein,et al.  3-Coloring in Time O(1.3289^n) , 2000, J. Algorithms.