A Hauser-Feshbach compatible unified exciton model

[1]  H. Gruppelaar,et al.  Comments on the state densities and the transition rates in the pre-equilibrium exciton model , 1985 .

[2]  K. Mcvoy,et al.  Pre-equilibrium nuclear reactions: The overlapping-doorway model for multi-step compound processes , 1983 .

[3]  M. Herman,et al.  Spin distribution of exciton levels for spherical nuclei , 1982 .

[4]  Herman Feshbach,et al.  The statistical theory of multi-step compound and direct reactions , 1980 .

[5]  F. J. Luider Note on the solution of the master equation in the exciton model of pre-equilibrium theory , 1978 .

[6]  H. Weidenmüller,et al.  The statistical theory of nuclear reactions for strongly overlapping resonances as a theory of transport phenomena , 1975 .

[7]  E. Gadioli,et al.  Intermediate-state decay rates in the exciton model , 1973 .

[8]  H. Vonach,et al.  Level density parameters for the back-shifted fermi gas model in the mass range 40 < A < 250 , 1973 .

[9]  F. C. Williams Intermediate state transition rates in the Griffin model , 1970 .

[10]  A. G. W. Cameron,et al.  A COMPOSITE NUCLEAR-LEVEL DENSITY FORMULA WITH SHELL CORRECTIONS , 1965 .

[11]  J. Beery,et al.  ELASTIC SCATTERING OF 10.5- AND 14.5-Mev POLARIZED PROTONS FROM NUCLEI AND THE OPTICAL MODEL POTENTIAL AT INTERMEDIATE ENERGIES , 1965 .

[12]  P. Hodgson,et al.  The calculation of neutron cross-sections from optical potentials , 1964 .

[13]  F. G. Perey,et al.  Optical-Model Analysis of Proton Elastic Scattering in the Range of 9 to 22 MeV , 1963 .

[14]  D. F. Hays,et al.  Table of Integrals, Series, and Products , 1966 .