Free vibration analysis of microtubules based on an atomistic-continuum model

Abstract Analysis of free vibration of microtubules, based on an atomistic-continuum model, is presented. The theory bridges the polyatomic structure of microtubules with a macroscopic continuum approach under mesh-free computing scheme. A higher-order gradient continuum constitutive relationship is developed and incorporated into a higher-order Cauchy–Born rule. Instead of considering the atomic interaction between every atom pair in such polyatomic bio-composite textures, interatomic energy between subcomponents in microtubules is evaluated by a homogenization technique, represented by the fictitious bond. Material properties and stiffness matrix are determined, depending on deformation of fictitious bonds. Since the mesh-free approximation automatically satisfies the higher-order continuity and possesses intrinsic nonlocal property, the established quasicontinuum theory takes into consideration both atomic interaction and the size effect for modeling this microscale structure. Natural vibration frequencies of microtubules of different lengths and boundary restrictions are predicted and compared with existing solutions.

[1]  George C. Schatz,et al.  An atomistic-continuum Cosserat rod model of carbon nanotubes , 2009 .

[2]  C. Q. Ru,et al.  Effective bending stiffness of carbon nanotubes , 2000 .

[3]  Boris I. Yakobson,et al.  Atomistic theory of mechanical relaxation in fullerene nanotubes , 2000 .

[4]  K. M. Liew,et al.  Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes , 2008 .

[5]  K. M. Liew,et al.  Modeling of the mechanical instability of carbon nanotubes , 2008 .

[6]  C. Wang,et al.  The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes , 2007, Nanotechnology.

[7]  Hideo Tashiro,et al.  Flexural rigidity of individual microtubules measured by a buckling force with optical traps. , 2006, Biophysical journal.

[8]  K. M. Liew,et al.  Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction , 2005 .

[9]  C. Lim,et al.  Wave propagation in carbon nanotubes: Nonlocal elasticity-induced stiffness and velocity enhancement effects , 2010 .

[10]  K. Liew,et al.  The buckling of single-walled carbon nanotubes upon bending: The higher order gradient continuum and mesh-free method , 2008 .

[11]  Yang Xiang,et al.  Research on thick plate vibration: a literature survey , 1995 .

[12]  P. Papanikos,et al.  The effect of Stone–Wales defect on the tensile behavior and fracture of single-walled carbon nanotubes , 2007 .

[13]  Hongwu W. Zhang,et al.  Influence of inversion energy on elastic properties of single-walled carbon nanotubes , 2007 .

[14]  Bryan D. Vogt,et al.  Atomistic-based continuum constitutive relation for microtubules: elastic modulus prediction , 2008 .

[15]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[16]  Jie Yang,et al.  Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory , 2010 .

[17]  A. Mioduchowski,et al.  Vibration of microtubules as orthotropic elastic shells , 2006 .

[18]  Wanlin Guo,et al.  Relevance of Timoshenko-beam model to microtubules of low shear modulus , 2008 .

[19]  Shaker A. Meguid,et al.  Multiscale modeling of the nonlinear response of nano-reinforced polymers , 2011 .

[20]  K. M. Liew,et al.  A continuum mechanics framework and a constitutive model for predicting the orthotropic elastic properties of microtubules , 2011 .

[21]  J. Scholey,et al.  Cell division , 2003, Nature.

[22]  Y. K. Cheung,et al.  Free vibration and buckling analysis of plates by the negative stiffness method , 1986 .

[23]  D. Beskos,et al.  Wave dispersion in gradient elastic solids and structures: A unified treatment , 2009 .

[24]  H Tashiro,et al.  Buckling of a single microtubule by optical trapping forces: direct measurement of microtubule rigidity. , 1995, Cell motility and the cytoskeleton.

[25]  L. J. Bain,et al.  Introduction to Probability and Mathematical Statistics , 1987 .

[26]  K. Liew,et al.  Predicting buckling behavior of microtubules based on an atomistic-continuum model , 2011 .

[27]  C. Ru,et al.  Torsion of the central pair microtubules in eukaryotic flagella due to bending-driven lateral buckling. , 2006, Biochemical and biophysical research communications.

[28]  K. Liew,et al.  Elastic properties and pressure-induced structural transitions of single-walled carbon nanotubes , 2008 .

[29]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[30]  S. K. Lai,et al.  Nonlinear Free Vibration of an Elastically-Restrained Beam with a Point Mass via the Newton-Harmonic Balancing Approach , 2009 .

[31]  Shaker A. Meguid,et al.  Nanomechanics of single and multiwalled carbon nanotubes , 2004 .

[32]  Paraskevas Papanikos,et al.  Finite element modeling of single-walled carbon nanotubes , 2005 .

[33]  Margaret Lucas,et al.  A preliminary investigation into optimising the response of vibrating systems used for ultrasonic cutting , 2004 .

[34]  Vijay K. Varadan,et al.  Vibration of carbon nanotubes studied using nonlocal continuum mechanics , 2006 .

[35]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[36]  C. Wang,et al.  Exact variational nonlocal stress modeling with asymptotic higher-order strain gradients for nanobeams , 2007 .

[37]  Jianhua Wang,et al.  Mechanical properties of single-walled carbon nanotubes based on higher order Cauchy–Born rule , 2006 .

[38]  S. Kitipornchai,et al.  Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory , 2009 .

[39]  K. Liew,et al.  Application of the higher‐order Cauchy–Born rule in mesh‐free continuum and multiscale simulation of carbon nanotubes , 2008 .

[40]  C. Séguin,et al.  The effects of high hydrostatic pressure on microfilaments and microtubules in Xenopus laevis. , 1978, Journal of embryology and experimental morphology.

[41]  A. Metrikine,et al.  Surface ground vibration due to a moving train in a tunnel : Two-dimensional model , 2000 .

[42]  S. Mukherjee,et al.  Modifications to the Cauchy–Born rule: Applications in the deformation of single-walled carbon nanotubes , 2006 .

[43]  Quan Wang Instability analysis of double-walled carbon nanotubes subjected to axial compression , 2008 .

[44]  J. B. Wang,et al.  Predicting the elastic properties of single-walled carbon nanotubes , 2005 .

[45]  F. MacKintosh,et al.  Deformation and collapse of microtubules on the nanometer scale. , 2003, Physical review letters.

[46]  Ö. Civalek,et al.  FREE VIBRATION ANALYSIS OF MICROTUBULES AS CYTOSKELETON COMPONENTS: NONLOCAL EULER-BERNOULLI BEAM MODELING , 2010 .

[47]  Ömer Civalek,et al.  Free Vibration and Bending Analyses of Cantilever Microtubules Based on Nonlocal Continuum Model , 2010 .

[48]  K. Liew,et al.  Mesh-free simulation of single-walled carbon nanotubes using higher order Cauchy–Born rule , 2008 .

[49]  Manfred Schliwa,et al.  Molecular motors , 2003, Nature.

[50]  C. Q. Ru,et al.  Axially compressed buckling of a doublewalled carbon nanotube embedded in an elastic medium , 2001 .

[51]  Q. X. Wang,et al.  Multiscale Simulation of Coupled Length-Scales via Meshless Method and Molecular Dynamics , 2009 .