Automatic registration of 3D datasets using Gaussian fields

In this paper we introduce a new 3D automatic registration method based on Gaussian fields and energy minimization. The method defines a simple C/sup /spl infin// energy function, which is convex in a large neighborhood of the alignment parameters; allowing for the use of powerful standard optimization techniques. We show that the size of the region of convergence can be significantly extended reducing the need for close initialization and overcoming local convergence problems of the standard iterative closest point (ICP) algorithms. Furthermore, the Gaussian criterion can be evaluated with linear computational complexity using fast Gauss transform methods, allowing for an efficient implementation of the registration algorithm. Experimental analysis of the technique using real world datasets shows the usefulness as well as the limits of the approach.

[1]  Ernest L. Hall,et al.  Three-Dimensional Moment Invariants , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Patrick J. Flynn,et al.  A Survey Of Free-Form Object Representation and Recognition Techniques , 2001, Comput. Vis. Image Underst..

[3]  Sang Wook Lee,et al.  ICP Registration Using Invariant Features , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[5]  Olivier D. Faugeras,et al.  Shape metrics, warping and statistics , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[6]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[7]  Diego A. Murio,et al.  The Mollification Method and the Numerical Solution of Ill-Posed Problems , 1993 .

[8]  Andrew W. Fitzgibbon,et al.  Robust Registration of 2D and 3D Point Sets , 2003, BMVC.

[9]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Larry S. Davis,et al.  Efficient Kernel Density Estimation Using the Fast Gauss Transform with Applications to Color Modeling and Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  L. Greengard The Rapid Evaluation of Potential Fields in Particle Systems , 1988 .

[12]  Leslie Greengard,et al.  The Fast Gauss Transform , 1991, SIAM J. Sci. Comput..

[13]  Larry S. Davis,et al.  Improved fast gauss transform and efficient kernel density estimation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.