Network Structure within the Cerebellar Input Layer Enables Lossless Sparse Encoding

Summary The synaptic connectivity within neuronal networks is thought to determine the information processing they perform, yet network structure-function relationships remain poorly understood. By combining quantitative anatomy of the cerebellar input layer and information theoretic analysis of network models, we investigated how synaptic connectivity affects information transmission and processing. Simplified binary models revealed that the synaptic connectivity within feedforward networks determines the trade-off between information transmission and sparse encoding. Networks with few synaptic connections per neuron and network-activity-dependent threshold were optimal for lossless sparse encoding over the widest range of input activities. Biologically detailed spiking network models with experimentally constrained synaptic conductances and inhibition confirmed our analytical predictions. Our results establish that the synaptic connectivity within the cerebellar input layer enables efficient lossless sparse encoding. Moreover, they provide a functional explanation for why granule cells have approximately four dendrites, a feature that has been evolutionarily conserved since the appearance of fish.

[1]  Michael L. Hines,et al.  NeuroML: A Language for Describing Data Driven Models of Neurons and Networks with a High Degree of Biological Detail , 2010, PLoS Comput. Biol..

[2]  L. Abbott,et al.  Random Convergence of Olfactory Inputs in the Drosophila Mushroom Body , 2013, Nature.

[3]  Michael L. Hines,et al.  The NEURON Book , 2006 .

[4]  Egidio D'Angelo,et al.  Granule Cell Ascending Axon Excitatory Synapses onto Golgi Cells Implement a Potent Feedback Circuit in the Cerebellar Granular Layer , 2013, The Journal of Neuroscience.

[5]  Pentti Kanerva,et al.  Sparse Distributed Memory , 1988 .

[6]  G. Laurent,et al.  Normalization for Sparse Encoding of Odors by a Wide-Field Interneuron , 2011, Science.

[7]  R. Silver,et al.  Fast vesicle reloading and a large pool sustain high bandwidth transmission at a central synapse , 2006, Nature.

[8]  S. Laughlin,et al.  An Energy Budget for Signaling in the Grey Matter of the Brain , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[9]  William Wisden,et al.  Adaptive regulation of neuronal excitability by a voltage- independent potassium conductance , 2001, Nature.

[10]  Kanichay Rt,et al.  Synaptic and Cellular Properties of the Feedforward Inhibitory Circuit within the Input Layer of the Cerebellar Cortex , 2008 .

[11]  J. Szentágothai,et al.  Quantitative histological analysis of the cerebellar cortex in the cat. IV. Mossy fiber-Purkinje cell numerical transfer. , 1972, Brain research.

[12]  David Attwell,et al.  Multiple modes of GABAergic inhibition of rat cerebellar granule cells , 2003, The Journal of physiology.

[13]  Jackie Schiller,et al.  Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo , 2012, Nature.

[14]  Hammad Qureshi Contributions , 1974, Livre Blanc de la Recherche en Mécanique.

[15]  D. Marr A theory of cerebellar cortex , 1969, The Journal of physiology.

[16]  M. Fujita,et al.  Adaptive filter model of the cerebellum , 1982, Biological Cybernetics.

[17]  R Angus Silver,et al.  Synaptic and Cellular Properties of the Feedforward Inhibitory Circuit within the Input Layer of the Cerebellar Cortex , 2008, The Journal of Neuroscience.

[18]  Bruno A Olshausen,et al.  Sparse coding of sensory inputs , 2004, Current Opinion in Neurobiology.

[19]  Gilles Laurent,et al.  Olfactory network dynamics and the coding of multidimensional signals , 2002, Nature Reviews Neuroscience.

[20]  O. Kiehn,et al.  Dual-mode operation of neuronal networks involved in left–right alternation , 2013, Nature.

[21]  J. Albus A Theory of Cerebellar Function , 1971 .

[22]  Cerebellar cortex, cytology and organization , 1975 .

[23]  Curtis C Bell,et al.  Granular cells of the mormyrid electrosensory lobe and postsynaptic control over presynaptic spike occurrence and amplitude through an electrical synapse. , 2007, Journal of neurophysiology.

[24]  Lokeshvar Nath Kalia,et al.  Timing and plasticity in the cerebellum: focus on the granular layer , 2009, Trends in Neurosciences.

[25]  Tiago Branco,et al.  Tonic Inhibition Enhances Fidelity of Sensory Information Transmission in the Cerebellar Cortex , 2012, The Journal of Neuroscience.

[26]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[27]  R. Angus Silver,et al.  neuroConstruct: A Tool for Modeling Networks of Neurons in 3D Space , 2007, Neuron.

[28]  Istvan Mody,et al.  GABA Transporter Deficiency Causes Tremor, Ataxia, Nervousness, and Increased GABA-Induced Tonic Conductance in Cerebellum , 2005, The Journal of Neuroscience.

[29]  G. M. Shambes,et al.  Fractured somatotopy in granule cell tactile areas of rat cerebellar hemispheres revealed by micromapping. , 1978, Brain, behavior and evolution.

[30]  Henry Markram,et al.  Neural Networks with Dynamic Synapses , 1998, Neural Computation.

[31]  S. Cull-Candy,et al.  Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. , 1996, The Journal of physiology.

[32]  R. Snider Neurobiology of cerebellar evolution and development , 1971 .

[33]  F. Sultan,et al.  Distribution of mossy fibre rosettes in the cerebellum of cat and mice: evidence for a parasagittal organization at the single fibre level , 2001, The European journal of neuroscience.

[34]  J. Szentágothai,et al.  Quantitative histological analysis of the cerebellar cortex in the cat. I. Number and arrangement in space of the Purkinje cells. , 1971, Brain research.

[35]  W. Maass,et al.  State-dependent computations: spatiotemporal processing in cortical networks , 2009, Nature Reviews Neuroscience.

[36]  Adam W Hantman,et al.  Convergence of pontine and proprioceptive streams onto multimodal cerebellar granule cells , 2013, eLife.

[37]  Kevin L. Briggman,et al.  Wiring specificity in the direction-selectivity circuit of the retina , 2011, Nature.

[38]  Egidio D'Angelo,et al.  Silencing the majority of cerebellar granule cells uncovers their essential role in motor learning and consolidation. , 2013, Cell reports.

[39]  L. Tsimring,et al.  Topological determinants of epileptogenesis in large-scale structural and functional models of the dentate gyrus derived from experimental data. , 2007, Journal of neurophysiology.

[40]  K. Doya,et al.  Unsupervised learning of granule cell sparse codes enhances cerebellar adaptive control , 2001, Neuroscience.

[41]  William Wisden,et al.  Raising cytosolic Cl− in cerebellar granule cells affects their excitability and vestibulo‐ocular learning , 2012, The EMBO journal.

[42]  R. W. Draft,et al.  Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system , 2007, Nature.

[43]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[44]  J. Houk,et al.  Movement-related inputs to intermediate cerebellum of the monkey. , 1993, Journal of neurophysiology.

[45]  T Tyrrell,et al.  Cerebellar cortex: its simulation and the relevance of Marr's theory. , 1992, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[46]  J. Rothman,et al.  Synaptic depression enables neuronal gain control , 2009, Nature.

[47]  Andrew C. Lin,et al.  Sparse, Decorrelated Odor Coding in the Mushroom Body Enhances Learned Odor Discrimination , 2014, Nature Neuroscience.

[48]  Chris I. De Zeeuw,et al.  High Frequency Burst Firing of Granule Cells Ensures Transmission at the Parallel Fiber to Purkinje Cell Synapse at the Cost of Temporal Coding , 2013, Front. Neural Circuits.

[49]  Greg Wayne,et al.  A temporal basis for predicting the sensory consequences of motor commands in an electric fish , 2014, Nature Neuroscience.

[50]  R. Harvey,et al.  Quantitative study of granule and Purkinje cells in the cerebellar cortex of the rat , 1988, The Journal of comparative neurology.

[51]  Olaf Sporns,et al.  Network structure of cerebral cortex shapes functional connectivity on multiple time scales , 2007, Proceedings of the National Academy of Sciences.

[52]  P. J. Sjöström,et al.  Functional specificity of local synaptic connections in neocortical networks , 2011, Nature.

[53]  R. Silver,et al.  Rapid-time-course miniature and evoked excitatory currents at cerebellar synapses in situ , 1992, Nature.

[54]  Stefano Panzeri,et al.  The Upward Bias in Measures of Information Derived from Limited Data Samples , 1995, Neural Computation.

[55]  S. Nelson,et al.  An emergent model of orientation selectivity in cat visual cortical simple cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  Stéphane Dieudonné,et al.  NMDA Receptors with Incomplete Mg2+ Block Enable Low-Frequency Transmission through the Cerebellar Cortex , 2012, The Journal of Neuroscience.

[57]  R Angus Silver,et al.  The Contribution of Single Synapses to Sensory Representation in Vivo , 2008, Science.

[58]  Henrik Jörntell,et al.  Properties of Somatosensory Synaptic Integration in Cerebellar Granule Cells In Vivo , 2006, The Journal of Neuroscience.

[59]  R. Williams,et al.  The control of neuron number. , 1988, Annual review of neuroscience.

[60]  K K Osen,et al.  Fine structure of granule cells and related interneurons (termed Golgi cells) in the cochlear nuclear complex of cat, rat and mouse , 1980, Journal of neurocytology.

[61]  M. Häusser,et al.  High-fidelity transmission of sensory information by single cerebellar mossy fibre boutons , 2007, Nature.

[62]  David Willshaw,et al.  The cerebellum as a neuronal machine , 1999 .

[63]  R. Silver,et al.  Spillover of Glutamate onto Synaptic AMPA Receptors Enhances Fast Transmission at a Cerebellar Synapse , 2002, Neuron.

[64]  Samuel S.-H. Wang,et al.  Evolution and scaling of dendrites , 2012 .

[65]  Javier F. Medina,et al.  Computer simulation of cerebellar information processing , 2000, Nature Neuroscience.

[66]  R. Silver,et al.  Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope , 2014, Journal of Neuroscience Methods.