ON THE VARIATIONAL APPROXIMATION OF FREE-DISCONTINUITY PROBLEMS IN THE VECTORIAL CASE

We provide a variational approximation for quasiconvex energies defined on vector valued special functions with bounded variation. We extend the Ambrosio–Tortorelli's construction to the vectorial case.

[1]  L. Ambrosio On the lower semicontinuity of quasiconvex integrals in SBV W , R k , 1994 .

[2]  Free discontinuity problems generated by singular perturbation: the n−dimensional case , 2000, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[3]  Guido Cortesani,et al.  A density result in SBV with respect to non-isotropic energies , 1999 .

[4]  L. Ambrosio Existence theory for a new class of variational problems , 1990 .

[5]  Luigi Ambrosio,et al.  ON THE APPROXIMATION OF FREE DISCONTINUITY PROBLEMS , 1992 .

[6]  Massimo Gobbino Finite Difference Approximation of the Mumford-Shah Functional , 1998 .

[7]  Luigi Ambrosio,et al.  A new proof of the SBV compactness theorem , 1995 .

[8]  Andrea Braides,et al.  Free-discontinuity problems generated by singular perturbation , 1998, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[9]  Guido Cortesani,et al.  Sequences of Non‐Local Functionals Which Approximate Free‐Discontinuity Problems , 1998 .

[10]  Jayant Shah,et al.  Free-discontinuity problems via functionals involving the L1-norm of the gradient and their approximations , 1999 .

[11]  L. Modica The gradient theory of phase transitions and the minimal interface criterion , 1987 .

[12]  L. Ambrosio,et al.  Approximation of functional depending on jumps by elliptic functional via t-convergence , 1990 .

[13]  Andrea Braides,et al.  Non-local approximation of the Mumford-Shah functional , 1997 .

[14]  Luigi Ambrosio,et al.  Partial regularity of free discontinuity sets, II , 1997 .

[15]  E. D. Giorgi,et al.  Existence theorem for a minimum problem with free discontinuity set , 1989 .