Light Absorption and Energy Transfer in the Antenna Complexes of Photosynthetic Organisms.

The process of photosynthesis is initiated by the capture of sunlight by a network of light-absorbing molecules (chromophores), which are also responsible for the subsequent funneling of the excitation energy to the reaction centers. Through evolution, genetic drift, and speciation, photosynthetic organisms have discovered many solutions for light harvesting. In this review, we describe the underlying photophysical principles by which this energy is absorbed, as well as the mechanisms of electronic excitation energy transfer (EET). First, optical properties of the individual pigment chromophores present in light-harvesting antenna complexes are introduced, and then we examine the collective behavior of pigment-pigment and pigment-protein interactions. The description of energy transfer, in particular multichromophoric antenna structures, is shown to vary depending on the spatial and energetic landscape, which dictates the relative coupling strength between constituent pigment molecules. In the latter half of the article, we focus on the light-harvesting complexes of purple bacteria as a model to illustrate the present understanding of the synergetic effects leading to EET optimization of light-harvesting antenna systems while exploring the structure and function of the integral chromophores. We end this review with a brief overview of the energy-transfer dynamics and pathways in the light-harvesting antennas of various photosynthetic organisms.

[1]  Graham R. Fleming,et al.  Influence of phonons on exciton transfer dynamics: comparison of the Redfield, Förster, and modified Redfield equations , 2002 .

[2]  N. Krinsky Carotenoid protection against oxidation , 1979 .

[3]  J. Dekker,et al.  Supramolecular organization of the photosynthetic apparatus of Rhodobacter sphaeroides , 2002 .

[4]  Zhishan Bo,et al.  A femtosecond transient absorption study of charge photogeneration and recombination dynamics in photovoltaic polymers with different side-chain linkages. , 2016, Nanoscale.

[5]  P. Arpin,et al.  Photosynthetic light harvesting: excitons and coherence , 2014, Journal of The Royal Society Interface.

[6]  A. Hoff,et al.  Ultrahigh field MAS NMR dipolar correlation spectroscopy of the histidine residues in light-harvesting complex II from photosynthetic bacteria reveals partial internal charge transfer in the B850/His complex. , 2001, Journal of the American Chemical Society.

[7]  D. Arnon,et al.  Photochemical activity and components of membrane preparations from blue-green algae. I. Coexistence of two photosystems in relation to chlorophyll a and removal of phycocyanin. , 1974, Biochimica et biophysica acta.

[8]  F. Daldal,et al.  The purple phototrophic bacteria , 2009 .

[9]  F. van Mourik,et al.  Trapping kinetics in mutants of the photosynthetic purple bacterium Rhodobacter sphaeroides: influence of the charge separation rate and consequences for the rate-limiting step in the light-harvesting process. , 1994, Biochemistry.

[10]  Klaus Schulten,et al.  Photosynthetic apparatus of purple bacteria , 2002, Quarterly Reviews of Biophysics.

[11]  Graham R. Fleming,et al.  On the Mechanism of Light Harvesting in Photosynthetic Purple Bacteria: B800 to B850 Energy Transfer , 2000 .

[12]  H. Scheer,et al.  Cyclic endoperoxides of beta-carotene, potential pro-oxidants, as products of chemical quenching of singlet oxygen. , 2005, Biochimica et biophysica acta.

[13]  Robert Eugene Blankenship,et al.  Femtosecond Spectroscopy of Chlorosome Antennas from the Green Photosynthetic Bacterium Chloroflexus aurantiacus , 1994 .

[14]  G. Fleming,et al.  Quantum coherence in photosynthetic complexes , 2011 .

[15]  G. Lanzani,et al.  Conjugation length dependence of internal conversion in carotenoids: role of the intermediate state. , 2004, Physical review letters.

[16]  Michael R. Wasielewski,et al.  Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis , 1994, Photosynthesis Research.

[17]  T. G. Truscott,et al.  Energy transfer between the carotenoid and the bacteriochlorophyll within the B-800-850 light-harvesting pigment-protein complex of Rhodopseudomonas sphaeroides. , 1981, Biochimica et biophysica acta.

[18]  J. Barber Photosynthetic energy conversion: natural and artificial. , 2009, Chemical Society reviews.

[19]  Robert M. Clegg,et al.  From Förster resonance energy transfer to coherent resonance energy transfer and back , 2010, BiOS.

[20]  N. Woodbury,et al.  Energy trapping and detrapping by wild type and mutant reaction centers of purple non-sulfur bacteria , 1996, Photosynthesis Research.

[21]  R. W. Visschers,et al.  Genetically modified photosynthetic antenna complexes with blueshifted absorbance bands , 1992, Nature.

[22]  Herbert van Amerongen,et al.  Refractive index dependence of the förster resonance excitation transfer rate , 2002 .

[23]  B. Matthews,et al.  Structure of a bacteriochlorophyll a-protein from the green photosynthetic bacterium Prosthecochloris aestuarii. , 1979, Journal of molecular biology.

[24]  R. Edge,et al.  Carotenoid Radicals and the Interaction of Carotenoids with Active Oxygen Species , 1999 .

[25]  Peter G. Adams,et al.  Adaptation of intracytoplasmic membranes to altered light intensity in Rhodobacter sphaeroides. , 2012, Biochimica et biophysica acta.

[26]  J. Amesz,et al.  Singlet-singlet annihilation at low temperatures in the antenna of purple bacteria , 1986 .

[27]  M. Mostovoy,et al.  Statistics of Optical Spectra from Single-Ring Aggregates and Its Application to LH2 , 2000 .

[28]  C. Foote,et al.  Chemistry of singlet oxygen. X. Carotenoid quenching parallels biological protection. , 1970, Journal of the American Chemical Society.

[29]  H. Sumi,et al.  Theory of Rapid Excitation-Energy Transfer from B800 to Optically-Forbidden Exciton States of B850 in the Antenna System LH2 of Photosynthetic Purple Bacteria , 1999 .

[30]  Klaus Schulten,et al.  Atomic-level structural and functional model of a bacterial photosynthetic membrane vesicle , 2007, Proceedings of the National Academy of Sciences.

[31]  A. Gilmore,et al.  Mechanistic aspects of xanthophyll cycle‐dependent photoprotection in higher plant chloroplasts and leaves , 1997 .

[32]  Rienk van Grondelle,et al.  An alternative carotenoid-to-bacteriochlorophyll energy transfer pathway in photosynthetic light harvesting , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[33]  E. Teller,et al.  Migration and Photochemical Action of Excitation Energy in Crystals , 1938 .

[34]  Alán Aspuru-Guzik,et al.  Scalable High-Performance Algorithm for the Simulation of Exciton Dynamics. Application to the Light-Harvesting Complex II in the Presence of Resonant Vibrational Modes. , 2014, Journal of chemical theory and computation.

[35]  Govindjee,et al.  Adventures with Cyanobacteria: A Personal Perspective , 2011, Front. Plant Sci..

[36]  V. M. Kenkre Relations among theories of excitation transfer. II. Influence of spectral features on exciton motion , 1975 .

[37]  T. Balaban,et al.  Photosensitization of TiO2 and SnO2 by Artificial Self-Assembling Mimics of the Natural Chlorosomal Bacteriochlorophylls , 2007 .

[38]  G. Garab,et al.  Far‐red fluorescence: A direct spectroscopic marker for LHCII oligomer formation in non‐photochemical quenching , 2008, FEBS letters.

[39]  D. Niedzwiedzki,et al.  Photophysical Properties and Electronic Structure of Bacteriochlorin–Chalcones with Extended Near‐Infrared Absorption , 2013, Photochemistry and photobiology.

[40]  Bernhardt,et al.  Theories for kinetics and yields of fluorescence and photochemistry: how, if at all, can different models of antenna organization be distinguished experimentally? , 1999, Biochimica et biophysica acta.

[41]  P. Malý,et al.  Fast Energy Transfer and Exciton Dynamics in Chlorosomes of the Green Sulfur Bacterium Chlorobium tepidum , 1998 .

[42]  Graham R. Fleming,et al.  CHROMOPHORE-SOLVENT DYNAMICS , 1996 .

[43]  H. Kohn Number of Chlorophyll Molecules acting as an Absorbing Unit in Photosynthesis , 1936, Nature.

[44]  I. V. van Stokkum,et al.  Functional rearrangement of the light-harvesting antenna upon state transitions in a green alga. , 2015, Biophysical journal.

[45]  F. Spano Excitons in conjugated oligomer aggregates, films, and crystals. , 2006, Annual review of physical chemistry.

[46]  J. Murrell,et al.  The theory of the electronic spectra of aromatic hydrocarbon dimers , 1964 .

[47]  Gregory D Scholes,et al.  Dark States in the Light-Harvesting complex 2 Revealed by Two-dimensional Electronic Spectroscopy , 2016, Scientific Reports.

[48]  R. van Grondelle,et al.  Dynamics of excitation energy transfer in the LH1 and LH2 light-harvesting complexes of photosynthetic bacteria. , 2001, Biochemistry.

[49]  William W. Parson,et al.  Light-Harvesting Antennas in Photosynthesis , 2003, Advances in Photosynthesis and Respiration.

[50]  C. Swenberg,et al.  Analysis of picosecond laser induced fluorescence phenomena in photosynthetic membranes utilizing a master equation approach. , 1979, Biophysical journal.

[51]  R. Grondelle Excitation energy transfer, trapping and annihilation in photosynthetic systems , 1985 .

[52]  J. Alster,et al.  Effect of quinones on formation and properties of bacteriochlorophyll c aggregates , 2008, Photosynthesis Research.

[53]  R. Cogdell,et al.  A spectral characterisation of the light-harvesting pigment-protein complexes from Rhodopseudomonas acidophila , 1986 .

[54]  S. Boxer,et al.  The Mechanism of Triplet Energy Transfer from the Special Pair to the Carotenoid in Bacterial Photosynthetic Reaction Centers , 1999 .

[55]  G. Fleming,et al.  An unusual pathway of excitation energy deactivation in carotenoids: Singlet-to-triplet conversion on an ultrafast timescale in a photosynthetic antenna , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[56]  J. Knoester,et al.  Optical line shapes of dynamically disordered ring aggregates , 1999 .

[57]  G. Scholes,et al.  Damping and higher multipole effects in the quantum electrodynamical model for electronic energy transfer in the condensed phase , 1997 .

[58]  R. Pearlstein Coupling of exciton motion in the core antenna and primary charge separation in the reaction center , 1996, Photosynthesis Research.

[59]  R. van Grondelle,et al.  Physical origins and models of energy transfer in photosynthetic light-harvesting. , 2010, Physical chemistry chemical physics : PCCP.

[60]  Robert Eugene Blankenship,et al.  Evolution of photosynthesis. , 2011, Annual review of plant biology.

[61]  T. Renger,et al.  How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria. , 2006, Biophysical journal.

[62]  Kanumuri Ramesh Reddy,et al.  Palette of lipophilic bioconjugatable bacteriochlorins for construction of biohybrid light-harvesting architectures , 2013 .

[63]  F. Perrin,et al.  Théorie quantique des transferts d’activation entre molécules de même espèce. Cas des solutions fluorescentes , 1932 .

[64]  V. Sundström,et al.  Energy transfer in spectrally inhomogeneous light-harvesting pigment-protein complexes of purple bacteria. , 1995, Biophysical journal.

[65]  L. Björn Why are plants green - relationships between pigment absorption and photosynthetic efficiency , 1976 .

[66]  K. Wohl THE MECHANISM OF PHOTOSYNTHESIS IN GREEN PLANTS , 1940 .

[67]  Graham R Fleming,et al.  Lessons from nature about solar light harvesting. , 2011, Nature chemistry.

[68]  J. Köhler,et al.  Low temperature spectroscopy of proteins. Part II: Experiments with single protein complexes , 2007 .

[69]  S. Ganapathy,et al.  Magic angle spinning (MAS) NMR: a new tool to study the spatial and electronic structure of photosynthetic complexes , 2009, Photosynthesis Research.

[70]  N. Frigaard,et al.  Exogenous quinones inhibit photosynthetic electron transfer in Chloroflexus aurantiacus by specific quenching of the excited bacteriochlorophyll c antenna. , 1999, Biochimica et biophysica acta.

[71]  R. Grondelle,et al.  Trapping, loss and annihilation of excitations in a photosynthetic system. I. Theoretical aspects , 1983 .

[72]  T. Gillbro,et al.  Energy transfer kinetics in chlorosomes from Chloroflexus aurantiacus: studies using picosecond absorbance spectroscopy , 1991 .

[73]  J. Olson,et al.  Antenna Complexes from Green Photosynthetic Bacteria , 1995 .

[74]  C. Hunter,et al.  The assembly and organisation of photosynthetic membranes in Rhodobacter sphaeroides , 2005, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[75]  Gregory D. Scholes,et al.  Rate expressions for excitation transfer. III. An ab initio study of electronic factors in excitation transfer and exciton resonance interactions , 1995 .

[76]  J. Lunn,et al.  Photosynthetic Sucrose Biosynthesis: An Evolutionary Perspective , 2012 .

[77]  Matthew P. Johnson,et al.  Visualizing the dynamic structure of the plant photosynthetic membrane , 2015, Nature Plants.

[78]  T. Polívka,et al.  Mechanism of photoprotection in the cyanobacterial ancestor of plant antenna proteins. , 2015, Nature chemical biology.

[79]  Rienk van Grondelle,et al.  Dynamics of the emission spectrum of a single LH2 complex: interplay of slow and fast nuclear motions. , 2006, Biophysical journal.

[80]  R. Govindjee,et al.  The absorption of light in photosynthesis. , 1974, Scientific American.

[81]  C. N. Hunter,et al.  Temperature dependence of energy transfer from the long wavelength antenna BChl-896 to the reaction center in Rhodospirillum rubrum, Rhodobacter sphaeroides (w.t. and M21 mutant) from 77 to 177K, studied by picosecond absorption spectroscopy , 1989, Photosynthesis Research.

[82]  Govindjee,et al.  Photophysics of Photosynthetic Pigment-Protein Complexes , 2014 .

[83]  T. Renger,et al.  The Eighth Bacteriochlorophyll Completes the Excitation Energy Funnel in the FMO Protein. , 2011, The journal of physical chemistry letters.

[84]  J. Köhler,et al.  Low-temperature single-molecule spectroscopy on photosynthetic pigment–protein complexes from purple bacteria , 2009, Photosynthesis Research.

[85]  N. Pon,et al.  Chemical composition and the substructure of lamellae isolated from Spinacea oleracea chloroplasts. , 1963, Journal of molecular biology.

[86]  N. L. Greenbaum,et al.  The absolute size of a photosynthetic unit , 1989 .

[87]  Graham R. Fleming,et al.  Adapting the Förster Theory of Energy Transfer for Modeling Dynamics in Aggregated Molecular Assemblies , 2001 .

[88]  T. Renger,et al.  Understanding photosynthetic light-harvesting: a bottom up theoretical approach. , 2013, Physical chemistry chemical physics : PCCP.

[89]  Robert M. Pearlstein Chlorophyll Singlet Excitons , 1982 .

[90]  A. Stirbet Excitonic connectivity between photosystem II units: what is it, and how to measure it? , 2013, Photosynthesis Research.

[91]  Robert Eugene Blankenship,et al.  Effects of oxidants and reductants on the efficiency of excitation transfer in green photosynthetic bacteria. , 1990, Biochimica et biophysica acta.

[92]  A. Oijen,et al.  Unraveling the electronic structure of individual photosynthetic pigment-protein complexes , 1999, Science.

[93]  V. Sundström,et al.  Energy transfer and trapping in photosynthesis , 1994 .

[94]  M. Mimuro,et al.  Excitation relaxation dynamics and energy transfer in fucoxanthin-chlorophyll a/c-protein complexes, probed by time-resolved fluorescence. , 2014, Biochimica et biophysica acta.

[95]  Gregory D. Scholes,et al.  Rate expressions for excitation transfer. II. Electronic considerations of direct and through–configuration exciton resonance interactions , 1994 .

[96]  Jasper Knoester,et al.  Optical properties of disordered molecular aggregates: a numerical study , 1991 .

[97]  D. Kirilovsky,et al.  Mechanisms Modulating Energy Arriving at Reaction Centers in Cyanobacteria , 2014 .

[98]  T. Mirkovic,et al.  Photosynthetic Light Harvesting , 2015 .

[99]  A. Holzwarth,et al.  A kinetic model for the energy transfer in phycobilisomes. , 1987, Biophysical journal.

[100]  Robert Emerson,et al.  THE PHOTOSYNTHETIC EFFICIENCY OF PHYCOCYANIN IN CHROOCOCCUS, AND THE PROBLEM OF CAROTENOID PARTICIPATION IN PHOTOSYNTHESIS , 1942, The Journal of general physiology.

[101]  L. Valkunas,et al.  A theory of excitation transfer in photosynthetic units. , 1983, Journal of theoretical biology.

[102]  Giovanna Tinetti,et al.  Spectral signatures of photosynthesis. II. Coevolution with other stars and the atmosphere on extrasolar worlds. , 2007, Astrobiology.

[103]  G. Murphy,et al.  Pigments, light penetration, and photosynthetic activity in the multi‐layered microbial mats of Great Sippewissett Salt Marsh, Massachusetts , 1987 .

[104]  Christopher S. Foote,et al.  Chemistry of singlet oxy-gen: VIII quenching by b-carotene , 1968 .

[105]  Jianshu Cao,et al.  Optimal fold symmetry of LH2 rings on a photosynthetic membrane , 2013, Proceedings of the National Academy of Sciences.

[106]  P. Falkowski,et al.  ACCLIMATION TO SPECTRAL IRRADIANCE IN ALGAE , 1991 .

[107]  Joshua S Yuan,et al.  Redesigning photosynthesis to sustainably meet global food and bioenergy demand , 2015, Proceedings of the National Academy of Sciences.

[108]  Zhenfeng Liu,et al.  Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution , 2004, Nature.

[109]  Robert Emerson,et al.  THE DEPENDENCE OF THE QUANTUM YIELD OF CHLORELLA PHOTOSYNTHESIS ON WAVE LENGTH OF LIGHT , 1943 .

[110]  R. Huber,et al.  Structural homology of reaction centers from Rhodopseudomonas sphaeroides and Rhodopseudomonas viridis as determined by x-ray diffraction. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[111]  K. Schulten,et al.  Quest for spatially correlated fluctuations in the FMO light-harvesting complex. , 2011, The journal of physical chemistry. B.

[112]  Tõnu Pullerits,et al.  Photosynthetic light-harvesting: Reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit , 1999 .

[113]  N. Sleep,et al.  The habitat and nature of early life , 2001, Nature.

[114]  W. Wehrmeyer,et al.  Correlation of pigment deprivation and ultrastructural organization of thylakoid membranes incryptomonas maculata following nutrient deficiency , 1985, Protoplasma.

[115]  H. Sumi Theory on Rates of Excitation-Energy Transfer between Molecular Aggregates through Distributed Transition Dipoles with Application to the Antenna System in Bacterial Photosynthesis , 1999 .

[116]  M. Kasha,et al.  ENERGY TRANSFER MECHANISMS AND THE MOLECULAR EXCITON MODEL FOR MOLECULAR AGGREGATES. , 1963, Radiation research.

[117]  J. Wachtveitl,et al.  Oligomerization and pigmentation dependent excitation energy transfer in fucoxanthin-chlorophyll proteins. , 2010, Biochimica et biophysica acta.

[118]  Tomáš Polívka,et al.  Dark excited states of carotenoids: Consensus and controversy , 2009 .

[119]  Garry Rumbles,et al.  Excitons in nanoscale systems , 2006, Nature materials.

[120]  R. Croce,et al.  From red to blue to far-red in Lhca4: how does the protein modulate the spectral properties of the pigments? , 2012, Biochimica et biophysica acta.

[121]  Min Chen Chlorophyll modifications and their spectral extension in oxygenic photosynthesis. , 2014, Annual review of biochemistry.

[122]  Aurélia Chenu,et al.  Coherence in energy transfer and photosynthesis. , 2015, Annual review of physical chemistry.

[123]  Richard T. Sayre,et al.  Optimization of photosynthetic light energy utilization by microalgae , 2012 .

[124]  Marie Louise Groot,et al.  Identification of excited-state energy transfer and relaxation pathways in the peridinin-chlorophyll complex: an ultrafast mid-infrared study. , 2010, Physical chemistry chemical physics : PCCP.

[125]  R. Hiller,et al.  Inter-pigment interactions in the peridinin chlorophyll protein studied by global and target analysis of time resolved absorption spectra , 2009 .

[126]  C. Gradinaru,et al.  Identifying the Pathways of Energy Transfer between Carotenoids and Chlorophylls in LHCII and CP29. A Multicolor, Femtosecond Pump-Probe Study , 2000 .

[127]  Govindjee,et al.  Photosystem Ii Fluorescence: Slow Changes – Scaling from the Past , 2022 .

[128]  Gregory D Scholes,et al.  Long-range resonance energy transfer in molecular systems. , 2003, Annual review of physical chemistry.

[129]  J. Kongsted,et al.  Photosynthetic light-harvesting is tuned by the heterogeneous polarizable environment of the protein. , 2011, Journal of the American Chemical Society.

[130]  V. Sundström,et al.  Energy transfer within the isolated B875 light‐harvesting pigment‐protein complex of Rhodobacter sphaeroides at 77 K studied by picosecond absorption spectroscopy , 1988 .

[131]  W. Vermaas,et al.  The three-dimensional structure of the cyanobacterium Synechocystis sp. PCC 6803 , 2005, Archives of Microbiology.

[132]  C. Mullineaux,et al.  Probing the Mechanism of State Transitions in Oxygenic Photosynthesis by Chlorophyll Fluorescence Spectroscopy, Kinetics and Imaging , 2004 .

[133]  Rienk van Grondelle,et al.  Energy transfer in photosynthesis: experimental insights and quantitative models. , 2006, Physical chemistry chemical physics : PCCP.

[134]  Horst Wallrabe,et al.  Imaging protein molecules using FRET and FLIM microscopy. , 2005, Current opinion in biotechnology.

[135]  G. Montoya,et al.  Two-dimensional structure of light harvesting complex II (LHII) from the purple bacterium Rhodovulum sulfidophilum and comparison with LHII from Rhodopseudomonas acidophila. , 1996, Structure.

[136]  A. Holzwarth,et al.  Fluorescence decay kinetics in phycobilisomes isolated from the bluegreen alga Synechococcus 6301 , 1984 .

[137]  Derek Abbott,et al.  Keeping the Energy Debate Clean: How Do We Supply the World's Energy Needs? , 2010, Proceedings of the IEEE.

[138]  L. Duysens Transfer of excitation energy in photosynthesis , 1952 .

[139]  G. Fleming,et al.  Femtosecond dynamics of the forbidden carotenoid S1 state in light-harvesting complexes of purple bacteria observed after two-photon excitation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[140]  Seogjoo J. Jang,et al.  Multichromophoric Förster resonance energy transfer. , 2004, Physical review letters.

[141]  L. R. Blinks,et al.  PHOTOSYNTHETIC ACTION SPECTRA OF MARINE ALGAE , 1950, The Journal of general physiology.

[142]  K. Diederichs,et al.  Structural Basis of Light Harvesting by Carotenoids: Peridinin-Chlorophyll-Protein from Amphidinium carterae , 1996, Science.

[143]  P. Curmi,et al.  Flow of excitation energy in the cryptophyte light-harvesting antenna phycocyanin 645. , 2011, Biophysical journal.

[144]  Gregory D. Scholes,et al.  Electronic Interactions and Interchromophore Excitation Transfer , 1994 .

[145]  Lars Olof Björn,et al.  The Evolution of Photosynthesis and Its Environmental Impact , 2008 .

[146]  Cogdell,et al.  Uphill energy transfer in LH2-containing purple bacteria at room temperature , 1998, Biochimica et Biophysica Acta.

[147]  Gregory D. Scholes,et al.  Energy transfer from Förster–Dexter theory to quantum coherent light-harvesting , 2011 .

[148]  J. Borst,et al.  Monitoring photosynthesis in individual cells of Synechocystis sp. PCC 6803 on a picosecond timescale. , 2010, Biophysical journal.

[149]  R. Monshouwer,et al.  Photosynthetic light-harvesting , 1996 .

[150]  Simon Scheuring,et al.  Variable LH2 stoichiometry and core clustering in native membranes of Rhodospirillum photometricum , 2004, The EMBO journal.

[151]  Jacopo Tomasi,et al.  How solvent controls electronic energy transfer and light harvesting. , 2007, The journal of physical chemistry. B.

[152]  Pigment organization and energy transfer in the green photosynthetic bacterium Chloroflexus aurantiacus , 1986 .

[153]  G. Oostergetel,et al.  The chlorosome: a prototype for efficient light harvesting in photosynthesis , 2010, Photosynthesis Research.

[154]  T. Renger,et al.  Structure-based calculations of optical spectra of photosystem I suggest an asymmetric light-harvesting process. , 2010, Journal of the American Chemical Society.

[155]  R. Louwe,et al.  TOWARD AN INTEGRAL INTERPRETATION OF THE OPTICAL STEADY-STATE SPECTRA OF THE FMO-COMPLEX OF PROSTHECOCHLORIS AESTUARII. 2. EXCITON SIMULATIONS , 1997 .

[156]  R. Monshouwer,et al.  Exciton (De)Localization in the LH2 Antenna of Rhodobacter sphaeroides As Revealed by Relative Difference Absorption Measurements of the LH2 Antenna and the B820 Subunit , 1999 .

[157]  G. Fleming,et al.  The Role of the S1 State of Carotenoids in Photosynthetic Energy Transfer: The Light-Harvesting Complex II of Purple Bacteria , 2001 .

[158]  Matsuura,et al.  Oxygen uncouples light absorption by the chlorosome antenna and photosynthetic electron transfer in the green sulfur bacterium chlorobium tepidum , 1999, Biochimica et biophysica acta.

[159]  Graham R Fleming,et al.  Multiscale model of light harvesting by photosystem II in plants , 2015, Proceedings of the National Academy of Sciences.

[160]  F. Spano The spectral signatures of Frenkel polarons in H- and J-aggregates. , 2010, Accounts of chemical research.

[161]  R. Grondelle,et al.  Trapping, loss and annihilation of excitations in a photosynthetic system: II. Experiments with the purple bacteria Rhodospirillum rubrum and Rhodopseudomonas capsulata , 1983 .

[162]  A. Holzwarth,et al.  Singlet energy dissipation in the photosystem II light-harvesting complex does not involve energy transfer to carotenoids. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[163]  N. Isaacs,et al.  The structure and thermal motion of the B800-850 LH2 complex from Rps.acidophila at 2.0A resolution and 100K: new structural features and functionally relevant motions. , 2003, Journal of molecular biology.

[164]  Jürgen Köhler,et al.  Probing the electronic structure and conformational flexibility of individual light-harvesting 3 complexes by optical single-molecule spectroscopy. , 2006, The journal of physical chemistry. B.

[165]  N. Isaacs,et al.  Crystal Structure of the RC-LH1 Core Complex from Rhodopseudomonas palustris , 2003, Science.

[166]  H. Frank,et al.  Molecular factors controlling photosynthetic light harvesting by carotenoids. , 2010, Accounts of chemical research.

[167]  G. Drews,et al.  Structure, Molecular Organization, and Biosynthesis of Membranes of Purple Bacteria , 1995 .

[168]  R. Silbey,et al.  Exciton Migration in Molecular Crystals , 1971 .

[169]  Robert Eugene Blankenship,et al.  Light saturation curves and quantum yields in reaction centers from photosynthetic bacteria. , 1984, Biophysical journal.

[170]  A. Grossman,et al.  The phycobilisome, a light-harvesting complex responsive to environmental conditions. , 1993, Microbiological reviews.

[171]  G. Fleming,et al.  Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer. , 2010, Physical chemistry chemical physics : PCCP.

[172]  L. Duysens,et al.  Chlorophyll a fluorescence as a monitor of nanosecond reduction of the photooxidized primary donor P-680 Of photosystem II. , 1979, Biochimica et biophysica acta.

[173]  Structure-based modeling of energy transfer in photosynthesis , 2013, Photosynthesis Research.

[174]  W. F. Watson,et al.  Self‐Quenching and Sensitization of Fluorescence of Chlorophyll Solutions , 1950 .

[175]  Rienk van Grondelle,et al.  Fluorescence spectral fluctuations of single LH2 complexes from Rhodopseudomonas acidophila strain 10050. , 2004, Biochemistry.

[176]  Matthew P. Johnson,et al.  The photoprotective molecular switch in the photosystem II antenna. , 2012, Biochimica et biophysica acta.

[177]  Photophysical properties of natural light-harvesting complexes studied by subsystem density functional theory. , 2008, The journal of physical chemistry. B.

[178]  Graham R Fleming,et al.  Dynamics of light harvesting in photosynthesis. , 2009, Annual review of physical chemistry.

[179]  Govindjee,et al.  Transfer of the excitation energy in Anacystis nidulans grown to obtain different pigment ratios. , 1966, Biophysical journal.

[180]  Tretiak,et al.  Chemical Bonding and Size-Scaling of Nonlinear Polarizabilities of Conjugated Polymers. , 1996, Physical review letters.

[181]  Klaus Schulten,et al.  The low‐lying electronic excitations in long polyenes: A PPP‐MRD‐CI study , 1986 .

[182]  Klaus Schulten,et al.  Pigment Organization and Transfer of Electronic Excitation in the Photosynthetic Unit of Purple Bacteria , 1997 .

[183]  G. Fleming,et al.  Quantum Coherence in Photosynthetic Light Harvesting , 2012 .

[184]  I. V. van Stokkum,et al.  Charge separation is virtually irreversible in photosystem II core complexes with oxidized primary quinone acceptor. , 2011, The journal of physical chemistry. A.

[185]  R. W. Visschers,et al.  Exciton interactions in the light-harvesting antenna of photosynthetic bacteria studied with triplet-singlet spectroscopy and singlet-triplet annihilation on the B820 subunit form of Rhodospirillum rubrum , 1991 .

[186]  R. Maccoll,et al.  Cyanobacterial phycobilisomes , 1998, Journal of structural biology.

[187]  Klaus Schulten,et al.  Photosynthetic vesicle architecture and constraints on efficient energy harvesting. , 2010, Biophysical journal.

[188]  Lars Olof Björn,et al.  A viewpoint: Why chlorophyll a? , 2009, Photosynthesis Research.

[189]  Jianping Zhang,et al.  Effects of aggregation on the excitation dynamics of LH2 from Thermochromatium tepidum in aqueous phase and in chromatophores. , 2011, The journal of physical chemistry. B.

[190]  David Beljonne,et al.  Beyond Förster resonance energy transfer in biological and nanoscale systems. , 2009, The journal of physical chemistry. B.

[191]  Katherine Richardson,et al.  ADAPTATION OF UNICELLULAR ALGAE TO IRRADIANCE: AN ANALYSIS OF STRATEGIES , 1983 .

[192]  M. Madigan,et al.  Evidence for limited species diversity of bacteriochlorophyll b-containing purple nonsulfur anoxygenic phototrophs in freshwater habitats. , 2003, FEMS microbiology letters.

[193]  N. Frigaard,et al.  Quenching of Bacteriochlorophyll Fluorescence in Chlorosomes from Chloroflexus aurantiacus by Exogenous Quinones¶ , 2000, Photochemistry and photobiology.

[194]  R. Monshouwer,et al.  Superradiance and Exciton Delocalization in Bacterial Photosynthetic Light-Harvesting Systems , 1997 .

[195]  V. Sundström,et al.  Carotenoid to chlorophyll energy transfer in the peridinin–chlorophyll-a–protein complex involves an intramolecular charge transfer state , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[196]  J. Olson,et al.  Optical and structural properties of chlorosomes of the photosynthetic green sulfur bacterium Chlorobium limicola , 1986 .

[197]  K. Miller,et al.  UNIQUE LOCATION OF THE PHYCOBILIPROTEIN LIGHT‐HARVESTING PIGMENT IN THE CRYPTOPHYCEAE 1 , 1989 .

[198]  H. van Amerongen,et al.  Quantum yield of charge separation in photosystem II: functional effect of changes in the antenna size upon light acclimation. , 2013, The journal of physical chemistry. B.

[199]  K. McGraw,et al.  Signal Functions of Carotenoid Colouration , 2008 .

[200]  Cathy Y. Wong,et al.  Three-pulse photon-echo peak shift spectroscopy and its application for the study of solvation and nanoscale excitons. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[201]  D. Piston,et al.  Fluorescent protein FRET: the good, the bad and the ugly. , 2007, Trends in biochemical sciences.

[202]  Klaus Schulten,et al.  Energy transfer between carotenoids and bacteriochlorophylls in light-harvesting complex II of purple bacteria , 1999 .

[203]  C. Wraight,et al.  The absolute quantum efficiency of bacteriochlorophyll photooxidation in reaction centres of Rhodopseudomonas spheroides. , 1974, Biochimica et biophysica acta.

[204]  Robert Eugene Blankenship,et al.  Ultrafast energy transfer in chlorosomes from the green photosynthetic bacterium Chloroflexus aurantiacus. , 1996, The Journal of physical chemistry.

[205]  S. Granick Evolution of Heme and Chlorophyll , 1965 .

[206]  A. Gall,et al.  Mapping energy transfer channels in fucoxanthin-chlorophyll protein complex. , 2015, Biochimica et biophysica acta.

[207]  R. Pearlstein Photosynthetic exciton theory in the 1960s , 2004, Photosynthesis Research.

[208]  Elliott W. Montroll,et al.  Random Walks on Lattices. III. Calculation of First‐Passage Times with Application to Exciton Trapping on Photosynthetic Units , 1969 .

[209]  D. Siefermann-Harms,et al.  The light-harvesting and protective functions of carotenoids in photosynthetic membranes , 1987 .

[210]  D. Bryant The Molecular Biology of Cyanobacteria , 1994, Advances in Photosynthesis.

[211]  Takeshi Inoue,et al.  Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. , 2009, Plant & cell physiology.

[212]  G. Fleming,et al.  Electronic Excitation Transfer in the LH2 Complex of Rhodobacter sphaeroides , 1996 .

[213]  M R Jones,et al.  Temporally and spectrally resolved subpicosecond energy transfer within the peripheral antenna complex (LH2) and from LH2 to the core antenna complex in photosynthetic purple bacteria. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[214]  L. Qin,et al.  Photoinduced electron transfer from the triplet state of zinc cytochrome c to ferricytochrome b5 is gated by configurational fluctuations of the diprotein complex. , 1994, Biochemistry.

[215]  R. W. Visschers,et al.  Fluorescence polarization and low-temperature absorption spectroscopy of a subunit form of light-harvesting complex I from purple photosynthetic bacteria. , 1991, Biochemistry.

[216]  Paul M G Curmi,et al.  How energy funnels from the phycoerythrin antenna complex to photosystem I and photosystem II in cryptophyte Rhodomonas CS24 cells. , 2006, The journal of physical chemistry. B.

[217]  J. Willison,et al.  Isolation and characterization of spirilloid purple phototrophic bacteria forming red layers in microbial mats of Mediterranean salterns: description of Halorhodospira neutriphila sp. nov. and emendation of the genus Halorhodospira. , 2003, International journal of systematic and evolutionary microbiology.

[218]  Graham R. Fleming,et al.  Electronic Excitation Transfer from Carotenoid to Bacteriochlorophyll in the Purple Bacterium Rhodopseudomonas acidophila , 1998 .

[219]  I. V. van Stokkum,et al.  Two different charge separation pathways in photosystem II. , 2010, Biochemistry.

[220]  B. Valeur,et al.  Pitfalls and limitations in the practical use of Förster’s theory of resonance energy transfer , 2008, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[221]  A. Holzwarth,et al.  The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. , 2012, Biochimica et biophysica acta.

[222]  G. Fleming,et al.  Energy Transfer and Photosynthetic Light Harvesting , 2005 .

[223]  Daniel B. Turner,et al.  Solar light harvesting by energy transfer: from ecology to coherence , 2012 .

[224]  N. Isaacs,et al.  Structural factors which control the position of the Qy absorption band of bacteriochlorophyll a in purple bacterial antenna complexes , 2004, Photosynthesis Research.

[225]  Gregory D. Scholes,et al.  Resonance energy transfer: Beyond the limits , 2011 .

[226]  M. K. Brennaman,et al.  Chemical approaches to artificial photosynthesis. 2. , 2005, Inorganic chemistry.

[227]  L. Mets,et al.  PICOSECOND FLUORESCENCE STUDY OF PHOTOSYNTHETIC MUTANTS OF Chlamydomonas reinhardii: ORIGIN OF THE FLUORESCENCE DECAY KINETICS OF CHLOROPLASTS , 1985, Photochemistry and photobiology.

[228]  A. Holzwarth,et al.  Kinetic and Energetic Model for the Primary Processes in Photosystem II. , 1988, Biophysical journal.

[229]  M. Hohmann-Marriott The Structural Basis of Biological Energy Generation , 2014, Advances in Photosynthesis and Respiration.

[230]  R. van Grondelle,et al.  Conformational switching explains the intrinsic multifunctionality of plant light-harvesting complexes , 2011, Proceedings of the National Academy of Sciences.

[231]  Gregory D. Scholes,et al.  Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature , 2010, Nature.

[232]  D. Caron,et al.  Relative effects of nitrogen or phosphorus depletion and light intensity on the pigmentation, chemical composition, and volume of Pyrenomonas salina (Cryptophyceae) , 1990 .

[233]  Donald A. Bryant,et al.  Alternating syn-anti bacteriochlorophylls form concentric helical nanotubes in chlorosomes , 2009, Proceedings of the National Academy of Sciences.

[234]  G. Porter,et al.  Concentration quenching in chlorophyll , 1976, Nature.

[235]  E. Singsaas,et al.  Variation in measured values of photosynthetic quantum yield in ecophysiological studies , 2001, Oecologia.

[236]  R. van Grondelle,et al.  How exciton-vibrational coherences control charge separation in the photosystem II reaction center. , 2015, Physical chemistry chemical physics : PCCP.

[237]  A. Holzwarth,et al.  Exciton dynamics in the chlorosomal antennae of the green bacteria Chloroflexus aurantiacus and Chlorobium tepidum. , 2000, Biophysical journal.

[238]  B. W. van der Meer Kappa-squared: from nuisance to new sense. , 2002, Journal of biotechnology.

[239]  The dependence of excitation energy transfer pathways on conjugation length of carotenoids in purple bacterial photosynthetic antennae , 2011 .

[240]  V. Novoderezhkin,et al.  Exciton dynamics in circular aggregates: application to antenna of photosynthetic purple bacteria. , 1995, Biophysical journal.

[241]  G. Scholes Designing light-harvesting antenna systems based on superradiant molecular aggregates , 2002 .

[242]  U. Kleinekathöfer,et al.  Time-dependent atomistic view on the electronic relaxation in light-harvesting system II. , 2010, The journal of physical chemistry. B.

[243]  Gary W. Brudvig,et al.  Energy Conversion in Photosynthesis: A Paradigm for Solar Fuel Production , 2011 .

[244]  J. Kennis,et al.  Femtosecond Dynamics in Isolated LH2 Complexes of Various Species of Purple Bacteria , 1997 .

[245]  G. Fleming,et al.  Three-Pulse Photon Echo Measurements on LH1 and LH2 Complexes of Rhodobacter sphaeroides: A Nonlinear Spectroscopic Probe of Energy Transfer , 1997 .

[246]  A. Rutherford,et al.  Artificial systems related to light driven electron transfer processes in PSII , 2008 .

[247]  R. van Grondelle,et al.  Spectroscopic Characterization of the Excitation Energy Transfer in the Fucoxanthin–Chlorophyll Protein of Diatoms , 2005, Photosynthesis Research.

[248]  Govindjee,et al.  The controversy over the minimum quantum requirement for oxygen evolution , 2014, Photosynthesis Research.

[249]  Thomas Renger,et al.  Optical properties, excitation energy and primary charge transfer in photosystem II: theory meets experiment. , 2011, Journal of photochemistry and photobiology. B, Biology.

[250]  G. Cerullo,et al.  Photosynthetic Light Harvesting by Carotenoids: Detection of an Intermediate Excited State , 2002, Science.

[251]  G. Fleming,et al.  Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: reduced hierarchy equation approach. , 2009, The Journal of chemical physics.

[252]  Vladimir I. Novoderezhkin,et al.  Quantum Coherence in Photosynthesis for Efficient Solar Energy Conversion , 2014, Nature Physics.

[253]  R. van Grondelle,et al.  Identification of two emitting sites in the dissipative state of the major light harvesting antenna. , 2012, Physical chemistry chemical physics : PCCP.

[254]  R. Clayton The biophysical problems of photosynthesis. , 1965, Science.

[255]  G. Scholes,et al.  Broadband 2D Electronic Spectroscopy Reveals a Carotenoid Dark State in Purple Bacteria , 2013, Science.

[256]  P. Rebentrost,et al.  Atomistic study of the long-lived quantum coherences in the Fenna-Matthews-Olson complex. , 2011, Biophysical journal.

[257]  J. Kongsted,et al.  Energy flow in the cryptophyte PE545 antenna is directed by bilin pigment conformation. , 2013, The journal of physical chemistry. B.

[258]  E. V. Khoroshilov,et al.  Förster energy transfer between neighbouring chromophores in C-phycocyanin trimers , 1993 .

[259]  P. Joliot,et al.  A connected model of the photosynthetic unit. , 1972, Biophysical journal.

[260]  A. Ley,et al.  Absolute absorption cross-sections for Photosystem II and the minimum quantum requirement for photosynthesis in Chlorella vulgaris , 1982 .

[261]  T. Forster Energiewanderung und Fluoreszenz , 2004, Naturwissenschaften.

[262]  M. G. Müller,et al.  Carotenoid-to-chlorophyll energy transfer in recombinant major light-harvesting complex (LHCII) of higher plants. I. Femtosecond transient absorption measurements. , 2001, Biophysical journal.

[263]  Daniel B. Turner,et al.  Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis. , 2012, Physical chemistry chemical physics : PCCP.

[264]  David L. Andrews,et al.  A unified theory of radiative and radiationless molecular energy transfer , 1989 .

[265]  T. Renger,et al.  Theory of excitonic couplings in dielectric media , 2011, Photosynthesis Research.

[266]  R. Silbey Electronic Energy Transfer in Molecular Crystals , 1976 .

[267]  S. McGlynn,et al.  Energy of Excimer Luminescence. III. Group Theoretical Considerations of Molecular Exciton and Charge Resonance States , 1965 .

[268]  D. Kirilovsky,et al.  Site, rate, and mechanism of photoprotective quenching in cyanobacteria. , 2011, Journal of the American Chemical Society.

[269]  C. B. Duke,et al.  Resonant Energy Transfer between Localized Electronic States in a Crystal , 1971 .

[270]  Jianping Zhang,et al.  Specific Ca2+‐binding motif in the LH1 complex from photosynthetic bacterium Thermochromatium tepidum as revealed by optical spectroscopy and structural modeling , 2009, The FEBS journal.

[271]  T. Moore,et al.  Biology and technology for photochemical fuel production. , 2009, Chemical Society reviews.

[272]  V. Sundström,et al.  Exciton Delocalization Length in the B850 Antenna of Rhodobacter sphaeroides , 1996 .

[273]  C. Büchel Fucoxanthin-chlorophyll proteins in diatoms: 18 and 19 kDa subunits assemble into different oligomeric states. , 2003, Biochemistry.

[274]  R. Silbey,et al.  On the calculation of transfer rates between impurity states in solids , 1983 .

[275]  Vincenzo Balzani,et al.  Photochemical conversion of solar energy. , 2008, ChemSusChem.

[276]  R. van Grondelle,et al.  Identification of the upper exciton component of the B850 bacteriochlorophylls of the LH2 antenna complex, using a B800-free mutant of Rhodobacter sphaeroides. , 1998, Biochemistry.

[277]  G. Britton Functions of Intact Carotenoids , 2008 .

[278]  B. Demmig‐Adams,et al.  Photoprotection and Other Responses of Plants to High Light Stress , 1992 .

[279]  P. Curmi,et al.  Mediation of ultrafast light-harvesting by a central dimer in phycoerythrin 545 studied by transient absorption and global analysis. , 2005, The journal of physical chemistry. B.

[280]  J. Ihalainen,et al.  Superradiance and Exciton (De)localization in Light-Harvesting Complex II from Green Plants? † , 2002 .

[281]  Robert Eugene Blankenship,et al.  The light intensity under which cells are grown controls the type of peripheral light-harvesting complexes that are assembled in a purple photosynthetic bacterium. , 2011, The Biochemical journal.

[282]  T. Inaba,et al.  Mechanism of the Carotenoid-to-Bacteriochlorophyll Energy Transfer via the S1 State in the LH2 Complexes from Purple Bacteria , 2000 .

[283]  T. Renger,et al.  How the molecular structure determines the flow of excitation energy in plant light-harvesting complex II. , 2011, Journal of plant physiology.

[284]  L. Duysens Transfer of Light Energy Within the Pigment Systems Present in Photosynthesizing Cells , 1951, Nature.

[285]  M. Mimuro,et al.  Calculation of the excitation transfer matrix elements between the S2 or S1 state of carotenoid and the S2 or S1 state of bacteriochlorophyll , 1993 .

[286]  S. Takaichi,et al.  Quinones in chlorosomes of green sulfur bacteria and their role in the redox-dependent fluorescence studied in chlorosome-like bacteriochlorophyll c aggregates , 1997, Archives of Microbiology.

[287]  T. Renger,et al.  Calculation of pigment transition energies in the FMO protein , 2008, Photosynthesis Research.

[288]  A. Gall,et al.  Characterization of the different peripheral light-harvesting complexes from high- and low-light grown cells from Rhodopseudomonas palustris. , 1999, Biochemistry.

[289]  I. Gould,et al.  Ab Initio Molecular Orbital Calculations of Electronic Couplings in the LH2 Bacterial Light-Harvesting Complex of Rps. Acidophila , 1999 .

[290]  B. Pierson,et al.  Spectral Irradiance and Distribution of Pigments in a Highly Layered Marine Microbial Mat , 1990, Applied and environmental microbiology.

[291]  G. Scholes Quantum-Coherent Electronic Energy Transfer: Did Nature Think of It First? , 2010 .

[292]  J. Amesz,et al.  Pigment organization and energy transfer in the green photosynthetic bacterium Chloroflexus aurantiacus. III. Energy transfer in whole cells , 1988, Photosynthesis Research.

[293]  A. Gall,et al.  Ultrafast Energy Transfer from Chlorophyll c 2 to Chlorophyll a in Fucoxanthin−Chlorophyll Protein Complex , 2013 .

[294]  V. May,et al.  Mixed quantum-classical description of excitation energy transfer in supramolecular complexes: screening of the excitonic coupling. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[295]  Werner K¨hlbrandt,et al.  Three-dimensional structure of plant light-harvesting complex determined by electron crystallography , 1991, Nature.

[296]  R. Knox,et al.  Picosecond fluorescence spectroscopy of the biliprotein phycocyanin 612: Direct evidence for fast energy transfer , 1985 .

[297]  J. Amesz,et al.  A bacteriochlorophyll a antenna complex from purple bacteria absorbing at 963 nm. , 2001, Biochemistry.

[298]  N. Isaacs,et al.  Structure‐Based Calculations of the Optical Spectra of the LH2 Bacteriochlorophyll‐Protein Complex from Rhodopseudomonas acidophila , 1996 .

[299]  J. Dow Resonance Energy Transfer in Condensed Media from a Many-Particle Viewpoint , 1968 .

[300]  J. P. Connelly,et al.  Ultrafast Spectroscopy of Trimeric Light-Harvesting Complex II from Higher Plants , 1997 .

[301]  R. Emerson,et al.  The Quantum Yield of Photosynthesis in Porphyridium cruentum, and the Role of Chlorophyll a in the Photosynthesis of Red Algae , 1959, The Journal of general physiology.

[302]  G. Small,et al.  Direct Observation and Hole Burning of the Lowest Exciton Level (B870) of the LH2 Antenna Complex of Rhodopseudomonas acidophila (Strain 10050) , 1997 .

[303]  Jörg Overmann,et al.  An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[304]  Alessandro Marin,et al.  Intra- and inter-monomeric transfers in the light harvesting LHCII complex: the Redfield-Förster picture. , 2011, Physical chemistry chemical physics : PCCP.

[305]  J. R. Evans The Dependence of Quantum Yield on Wavelength and Growth Irradiance , 1987 .

[306]  J. Amesz,et al.  Pigment organization and energy transfer in the green photosynthetic bacterium Chloroflexus aurantiacus , 2004, Photosynthesis Research.

[307]  Thomas Renger,et al.  Light harvesting in photosystem II core complexes is limited by the transfer to the trap: can the core complex turn into a photoprotective mode? , 2008, Journal of the American Chemical Society.

[308]  V. Sundström,et al.  Photosynthetic Light-Harvesting Pigment−Protein Complexes: Toward Understanding How and Why , 1996 .

[309]  G. Paillotin Motion of Excitons in Photosynthetic Units , 1972 .

[310]  M. Paddon-Row,et al.  Through-space and through-bond effects on exciton interactions in rigidly linked dinaphthyl molecules , 1993 .

[311]  Jürgen Köhler,et al.  The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes , 2006, Quarterly Reviews of Biophysics.

[312]  H. Gaffron,et al.  Zur Theorie der Assimilation , 1936, Naturwissenschaften.

[313]  S. Mukamel,et al.  Polarons, localization, and excitonic coherence in superradiance of biological antenna complexes , 1997 .

[314]  Underwater light profiles in some New Zealand lakes: A comparison of log‐linear and Weibull models , 1996 .

[315]  G. Fleming,et al.  Calculation of Couplings and Energy-Transfer Pathways between the Pigments of LH2 by the ab Initio Transition Density Cube Method , 1998 .

[316]  Tjaart P. J. Krüger,et al.  How Protein Disorder Controls Non-Photochemical Fluorescence Quenching , 2014 .

[317]  N. W. Isaacs,et al.  Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria , 1995, Nature.

[318]  Daniel B. Turner,et al.  Electronic coherence lineshapes reveal hidden excitonic correlations in photosynthetic light harvesting. , 2012, Nature chemistry.

[319]  P. Loach,et al.  Primary photochemistry and electron transport in Rhodospirillum rubrum. , 1968, Biochemistry.

[320]  H. Kohn,et al.  THE CHLOROPHYLL UNIT IN PHOTOSYNTHESIS , 1934, The Journal of general physiology.

[321]  J. Kennis,et al.  Identification of a mechanism of photoprotective energy dissipation in higher plants , 2007, Nature.

[322]  Jacopo Tomasi,et al.  Excitation energy transfer (EET) between molecules in condensed matter: a novel application of the polarizable continuum model (PCM). , 2004, Journal of Chemical Physics.

[323]  T. Renger,et al.  Intermolecular coulomb couplings from ab initio electrostatic potentials: application to optical transitions of strongly coupled pigments in photosynthetic antennae and reaction centers. , 2006, The journal of physical chemistry. B.

[324]  Simon Scheuring,et al.  Chromatic Adaptation of Photosynthetic Membranes , 2005, Science.

[325]  C. Foote CHAPTER 3 – Photosensitized Oxidation and Singlet Oxygen: Consequences in Biological Systems , 1976 .

[326]  F. Rao,et al.  Quantum mechanics of excitation transport in photosynthetic complexes: a key issues review , 2015, Reports on progress in physics. Physical Society.

[327]  R. Cogdell,et al.  The role of the 11Bu− state in carotenoid-to-bacteriochlorophyll singlet-energy transfer in the LH2 antenna complexes from Rhodobacter sphaeroides G1C, Rhodobacter sphaeroides 2.4.1, Rhodospirillum molischianum and Rhodopseudomonas acidophila , 2004 .

[328]  Tomas Gillbro,et al.  Energy Transfer and Exciton Annihilation in the B800−850 Antenna Complex of the Photosynthetic Purple Bacterium Rhodopseudomonas acidophila (Strain 10050). A Femtosecond Transient Absorption Study , 1997 .

[329]  R. Grondelle,et al.  Energy-transfer dynamics in the LHCII complex of higher plants: Modified redfield approach , 2004 .

[330]  M. Calvin,et al.  Molecular orientation in quantasomes. I. Electric dichroism and electric birefringence of quantasomes from spinach chloroplasts. , 1962, Journal of molecular biology.

[331]  Govindjee,et al.  Low-temperature (4–77°K) spectroscopy of chlorella; temperature dependence of energy transfer efficiency , 1970 .

[332]  W. Lubitz,et al.  Transient EPR and absorption studies of carotenoid triplet formation in purple bacterial antenna complexes , 2001 .

[333]  R. Cogdell,et al.  Fluctuations in the electron-phonon coupling of a single chromoprotein. , 2013, Angewandte Chemie.

[334]  F. Nori,et al.  Quantum biology , 2012, Nature Physics.

[335]  Katie E. Evans,et al.  A bacteriophytochrome regulates the synthesis of LH4 complexesin Rhodopseudomonas palustris , 2005, Photosynthesis Research.

[336]  Schmid,et al.  Investigation of the appropriateness of sensitized luminescence to determine exciton motion parameters in pure molecular crystals. , 1985, Physical review. B, Condensed matter.

[337]  L. Stryer Fluorescence energy transfer as a spectroscopic ruler. , 1978, Annual review of biochemistry.

[338]  Ansgar Philippsen,et al.  Structural Analysis of the Reaction Center Light-harvesting Complex I Photosynthetic Core Complex of Rhodospirillum rubrum Using Atomic Force Microscopy* , 2004, Journal of Biological Chemistry.

[339]  R. Monshouwer,et al.  Excitations and excitons in bacterial light-harvesting complexes. , 1996 .

[340]  H. Kirchhoff Architectural switches in plant thylakoid membranes , 2013, Photosynthesis Research.

[341]  Graham R. Fleming,et al.  Zeaxanthin Radical Cation Formation in Minor Light-harvesting Complexes of Higher Plant Antenna* , 2008, Journal of Biological Chemistry.

[342]  A. Gall,et al.  Excitons in the LH3 complexes from purple bacteria. , 2013, The journal of physical chemistry. B.

[343]  R. Lebrun,et al.  Antenna mixing in photosynthetic membranes from Phaeospirillum molischianum , 2010, Proceedings of the National Academy of Sciences.

[344]  Cees Otto,et al.  The native architecture of a photosynthetic membrane , 2004, Nature.

[345]  Gonghu Li,et al.  Energy conversion in natural and artificial photosynthesis. , 2010, Chemistry & biology.

[346]  G. Fleming,et al.  Electronic Interactions in Photosynthetic Light-Harvesting Complexes: The Role of Carotenoids , 1997 .

[347]  G. Fleming,et al.  Femtosecond spectroscopy of photosynthetic light-harvesting systems. , 1997, Current opinion in structural biology.

[348]  C. Bardeen The structure and dynamics of molecular excitons. , 2014, Annual review of physical chemistry.

[349]  S. Lloyd,et al.  Exciton diffusion length in complex quantum systems: the effects of disorder and environmental fluctuations on symmetry-enhanced supertransfer , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[350]  L. Natarajan,et al.  Antenna organization and evidence for the function of a new antenna pigment species in the green photosynthetic bacterium Chloroflexus aurantiacus , 1982 .

[351]  C. Curutchet,et al.  Limits and potentials of quantum chemical methods in modelling photosynthetic antennae. , 2015, Physical chemistry chemical physics : PCCP.

[352]  G. Fleming,et al.  Determination of long distance intramolecular triplet energy transfer rates. A quantitative comparison with electron transfer , 1988 .

[353]  R. van Grondelle,et al.  Multiple charge-separation pathways in photosystem II: modeling of transient absorption kinetics. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[354]  G. Schmid,et al.  Photosynthetic Units , 1968, The Journal of general physiology.