Hierarchical Concept-Driven Language Model

For guiding natural language generation, many semantic-driven methods have been proposed. While clearly improving the performance of the end-to-end training task, these existing semantic-driven met...

[1]  Haiyong Xie,et al.  KG-to-Text Generation with Slot-Attention and Link-Attention , 2019, NLPCC.

[2]  Mingyuan Zhou,et al.  Deep Poisson gamma dynamical systems , 2018, NeurIPS.

[3]  Xiaolin Li,et al.  GraphBTM: Graph Enhanced Autoencoded Variational Inference for Biterm Topic Model , 2018, EMNLP.

[4]  Heyan Huang,et al.  Query Expansion Based on a Feedback Concept Model for Microblog Retrieval , 2017, WWW.

[5]  Mingyuan Zhou,et al.  Poisson-Gamma dynamical systems , 2016, NIPS.

[6]  Li Wang,et al.  A Reinforced Topic-Aware Convolutional Sequence-to-Sequence Model for Abstractive Text Summarization , 2018, IJCAI.

[7]  Lan Du,et al.  Dirichlet belief networks for topic structure learning , 2018, NeurIPS.

[8]  W. Bruce Croft,et al.  Latent concept expansion using markov random fields , 2007, SIGIR.

[9]  Timothy Baldwin,et al.  Topically Driven Neural Language Model , 2017, ACL.

[10]  Deanna Needell,et al.  Stochastic gradient descent, weighted sampling, and the randomized Kaczmarz algorithm , 2013, Mathematical Programming.

[11]  Yanghua Xiao,et al.  Short Text Entity Linking with Fine-grained Topics , 2018, CIKM.

[12]  Guoyin Wang,et al.  Topic-Guided Variational Auto-Encoder for Text Generation , 2019, NAACL.

[13]  Vaibhava Goel,et al.  Self-Critical Sequence Training for Image Captioning , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[15]  Danyang Liu,et al.  A Transformer-Based Variational Autoencoder for Sentence Generation , 2019, 2019 International Joint Conference on Neural Networks (IJCNN).

[16]  Paul Bloom Glue for the mental world , 2003, Nature.

[17]  Haixun Wang,et al.  Understanding short texts through semantic enrichment and hashing , 2016, 2016 IEEE 32nd International Conference on Data Engineering (ICDE).

[18]  Pascal Poupart,et al.  Order-Planning Neural Text Generation From Structured Data , 2017, AAAI.

[19]  Chong Wang,et al.  Nested Hierarchical Dirichlet Processes , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Seung-won Hwang,et al.  Fine-Grained Semantic Conceptualization of FrameNet , 2016, AAAI.

[21]  Zhe Gan,et al.  Topic Compositional Neural Language Model , 2017, AISTATS.

[22]  Alexander M. Rush,et al.  Challenges in Data-to-Document Generation , 2017, EMNLP.

[23]  Kyunghyun Cho,et al.  Larger-Context Language Modelling with Recurrent Neural Network , 2015, ACL.

[24]  Heng Ji,et al.  Entity-aware Image Caption Generation , 2018, EMNLP.

[25]  Zhoujun Li,et al.  Concept-based Short Text Classification and Ranking , 2014, CIKM.

[26]  Haixun Wang,et al.  Short Text Conceptualization Using a Probabilistic Knowledgebase , 2011, IJCAI.

[27]  Haiyong Xie,et al.  Leveraging Lexical Semantic Information for Learning Concept-Based Multiple Embedding Representations for Knowledge Graph Completion , 2019, APWeb/WAIM.

[28]  Dimitra Gkatzia,et al.  A Snapshot of NLG Evaluation Practices 2005 - 2014 , 2015, ENLG.

[29]  Haixun Wang,et al.  Open Domain Short Text Conceptualization: A Generative + Descriptive Modeling Approach , 2015, IJCAI.

[30]  Qiang Zhou,et al.  Leveraging Conceptualization for Short-Text Embedding , 2018, IEEE Transactions on Knowledge and Data Engineering.

[31]  Hongwei Liu,et al.  Deep Latent Dirichlet Allocation with Topic-Layer-Adaptive Stochastic Gradient Riemannian MCMC , 2017, ICML.

[32]  Xindong Wu,et al.  Computing term similarity by large probabilistic isA knowledge , 2013, CIKM.

[33]  Guodong Zhou,et al.  Modeling Graph Structure in Transformer for Better AMR-to-Text Generation , 2019, EMNLP.

[34]  Yiming Yang,et al.  Transformer-XL: Attentive Language Models beyond a Fixed-Length Context , 2019, ACL.

[35]  Evgeniy Gabrilovich,et al.  Concept-Based Information Retrieval Using Explicit Semantic Analysis , 2011, TOIS.

[36]  Philipp Koehn,et al.  Scalable Modified Kneser-Ney Language Model Estimation , 2013, ACL.

[37]  Dongwoo Kim,et al.  Context-Dependent Conceptualization , 2013, IJCAI.

[38]  Shenghua Gao,et al.  A Revisit of Sparse Coding Based Anomaly Detection in Stacked RNN Framework , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[39]  Lukás Burget,et al.  Recurrent neural network based language model , 2010, INTERSPEECH.

[40]  Zhe Gan,et al.  Distilling Knowledge Learned in BERT for Text Generation , 2019, ACL.

[41]  Lawrence Carin,et al.  Multi-Task Learning for Classification with Dirichlet Process Priors , 2007, J. Mach. Learn. Res..

[42]  Heng Ji,et al.  Describing a Knowledge Base , 2018, INLG.

[43]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[44]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[45]  Lukás Burget,et al.  Extensions of recurrent neural network language model , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[46]  Jason Weston,et al.  A Neural Attention Model for Abstractive Sentence Summarization , 2015, EMNLP.

[47]  Ming Zhou,et al.  Selective Encoding for Abstractive Sentence Summarization , 2017, ACL.

[48]  Christopher Potts,et al.  Learning Word Vectors for Sentiment Analysis , 2011, ACL.

[49]  Geoffrey Zweig,et al.  Context dependent recurrent neural network language model , 2012, 2012 IEEE Spoken Language Technology Workshop (SLT).

[50]  David Grangier,et al.  Neural Text Generation from Structured Data with Application to the Biography Domain , 2016, EMNLP.