Slow-fast Dynamics Generated by Noninvertible Plane Maps
暂无分享,去创建一个
[1] C. Mira,et al. Chaotic Dynamics: From the One-Dimensional Endomorphism to the Two-Dimensional Diffeomorphism , 1987 .
[2] N. K. Rozov,et al. Differential Equations with Small Parameters and Relaxation Oscillations , 1980 .
[3] Andrey Shilnikov,et al. Origin of Chaos in a Two-Dimensional Map Modeling Spiking-bursting Neural Activity , 2003, Int. J. Bifurc. Chaos.
[4] C. Mira. Chaos and fractal properties induced by noninvertibility of models in the form of maps , 2000 .
[5] Samuel Lattès,et al. Sur les équations fonctionnelles qui définissent une courbe ou une surface invariante par une transformation , 1907 .
[6] Christian Mira,et al. On Some Properties of Invariant Sets of Two-Dimensional Noninvertible Maps , 1997 .
[7] Neil Fenichel. Geometric singular perturbation theory for ordinary differential equations , 1979 .
[8] Christian Mira,et al. Basin bifurcations of two-dimensional noninvertible maps : Fractalization of basins , 1994 .
[9] Christian Mira,et al. Dynamique chaotique : transformations ponctuelles, transition ordre-désordre , 1980 .
[10] J. Callot,et al. Chasse au canard , 1977 .
[11] Nikolai F. Rulkov,et al. Subthreshold oscillations in a map-based neuron model , 2004, q-bio/0406007.
[12] C Mira,et al. Chaotic Dynamics: From the One-Dimensional Endomorphism to the Two-Dimensional Diffeomorphism , 1987 .
[13] Christian Mira,et al. Chaotic Dynamics in Two-Dimensional Noninvertible Maps , 1996 .