Self-consistent model of 650 nm GaInP/AlGaInP quantum-well vertical-cavity surface-emitting diode lasers

A comprehensive fully self-consistent model of oxide-confined GaAs-based vertical-cavity surface-emitting diode lasers (VCSELs) with GaInP/AlGaInP quantum-well active regions to simulate their room-temperature (RT) continuous-wave (CW) operation is presented. The model takes into consideration all observed or expected special features of GaInP/AlGaInP VCSELs. A complete set of model parameters is given. The model enables a deeper understanding of a VCSEL operation with full complexity of many inter-related physical phenomena taking place within its volume. It may also be used to design and optimize the above VCSEL structures for their numerous applications, in particular as sources of the 650 nm carrier wave in communication systems using plastic optical fibres. With the aid of this model, anticipated VCSEL RT CW performance characteristics may be determined.

[1]  Peter Blood,et al.  The effect of cladding layer thickness on large optical cavity 650-nm lasers , 2002 .

[2]  R. Fischer,et al.  Comprehensive analysis of Si-doped Al x Ga 1-x As (x=0 to 1): Theory and experiments , 1984 .

[3]  L. Register,et al.  Numerical simulation of vertical cavity surface emitting lasers. , 1998, Optics express.

[4]  T. Takizawa Wavelength Modulated Reflectivities of the Direct Exciton Edge in GaP , 1983 .

[5]  Wlodzimierz Nakwaski,et al.  Thermal conductivity of binary, ternary, and quaternary III‐V compounds , 1988 .

[6]  P. Rochon,et al.  Photovoltaic effect and interband magneto-optical transitions in InP , 1975 .

[7]  Deformation potentials of the fundamental exciton spectrum of InP , 1980 .

[8]  John G. McInerney,et al.  Transverse-mode control of vertical-cavity surface-emitting lasers , 1996 .

[9]  Y. Koike,et al.  Propagating mode analysis and design of waveguide parameters of GI POF for very short-reach network use , 2005, IEEE Photonics Technology Letters.

[10]  R. Kúdela,et al.  Zn-Doped InGaP Grown by the LP- MOCVD , 1997 .

[11]  Takeshi Kitatani,et al.  Characterization of the Refractive Index of Lateral-Oxidation-Formed AlxOy by Spectroscopic Ellipsometry , 2002 .

[12]  Idelfonso Tafur Monroy,et al.  High-capacity transmission over polymer optical fiber , 2001 .

[13]  Claude Weisbuch,et al.  k → · p → perturbation theory in III-V compounds and alloys: a reexamination , 1977 .

[14]  W. Chow,et al.  Minimization of threshold current in short wavelength AlGaInP vertical-cavity surface-emitting lasers , 1995 .

[15]  Rainer Michalzik,et al.  Quasi-3D modeling of vertical-cavity surface-emitting laser operation , 1995, Photonics West.

[16]  K D Choquette,et al.  Lasing characteristics of visible AlGaInP/AlGaAs vertical-cavity lasers. , 1994, Optics letters.

[17]  John A. Neff,et al.  Analysis of vertical-cavity surface-emitting laser multimode behavior , 1997 .

[18]  G. R. Hadley,et al.  Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers , 1997 .

[19]  Randall S. Geels,et al.  Drift leakage current in AlGaInP quantum-well lasers , 1993 .

[20]  Sung-Mo Kang,et al.  A comprehensive circuit-level model of vertical-cavity surface-emitting lasers , 1999 .

[21]  Marvin J. Weber,et al.  Handbook of Optical Materials , 2002 .

[22]  S. Yoon,et al.  Electrical properties of silicon- and beryllium-doped GaInP and (AlGa)InP grown by solid source molecular beam epitaxy , 2002 .

[23]  S. Sweeney,et al.  Self-heating effects in red (665 nm) VCSELs , 2001 .

[24]  J. Lott,et al.  Wavelength dependence of the threshold in an InGaP-InAlGaP vertical cavity surface emitting laser , 1994 .

[25]  Joel Jacquet,et al.  Numerical modeling of undercut ridge VCSELs designed for CW operation at 1.3 /spl mu/m: design optimization , 1997 .

[26]  Y. P. Varshni Temperature dependence of the energy gap in semiconductors , 1967 .

[27]  P. Lawaetz,et al.  Valence-Band Parameters in Cubic Semiconductors , 1971 .

[28]  Siu Fung Yu,et al.  Comprehensive modeling of diffused quantum-well vertical-cavity surface-emitting lasers , 1998 .

[29]  R. J. Cobley,et al.  Modeling multiple quantum barrier effects and reduced electron leakage in red-emitting laser diodes , 2006 .

[30]  M. Kicherer,et al.  Multi-Gb/s graded-index POF data link with butt-coupled single-mode InGaAs VCSEL , 2000, IEEE Photonics Technology Letters.

[31]  P. Smowton,et al.  S-shaped negative differential resistance in 650 nm quantum well laser diodes , 2001 .

[32]  Marek Osinski,et al.  Self-consistent thermal-electrical modeling of proton-implanted top-surface emitting semiconductor lasers , 1994, Photonics West - Lasers and Applications in Science and Engineering.

[33]  J. A. Lott,et al.  Room temperature continuous wave operation of red vertical cavity surface emitting laser diodes , 1993 .

[34]  M. Osinski,et al.  Three-Dimensional Simulation of Vertical-Cavity Surface-Emitting Semiconductor Lasers , 2003 .

[35]  Ferdinand Scholz,et al.  Refractive index of (AlxGa1−x)0.5In0.5P grown by metalorganic vapor phase epitaxy , 1994 .

[36]  K.J. Malloy,et al.  Efficient room-temperature continuous-wave AlGaInP/AlGaAs visible (670 nm) vertical-cavity surface-emitting laser diodes , 1994, IEEE Photonics Technology Letters.

[37]  David J. Dunstan,et al.  Determination of the band structure of disordered AlGaInP and its influence on visible-laser characteristics , 1995 .

[38]  Marek Osinski,et al.  Design of InGaN-GaN-AlGaN vertical-cavity surface-emitting lasers using electrical-thermal-optical simulation , 2001 .

[39]  H. Li,et al.  Vertical-cavity surface-emitting laser devices , 2003 .

[40]  M. Pessa,et al.  Influence of deep level impurities on modulation response of InGaP light emitting diodes , 2001 .

[41]  P. Ivanov,et al.  Extended Model of a VCSEL with Non-Uniform Laser Structure , 2001 .

[42]  Jasprit Singh,et al.  Steady-state and transient characteristics of microcavity surface-emitting lasers with compressively strained quantum-well active regions , 1995 .

[43]  S. Tiwari Compound semiconductor device physics , 1992 .

[44]  H. Casey,et al.  Heterostructure lasers. Part A. Fundamental principles , 1978 .

[45]  John E. Bowers,et al.  Simulation and analysis of 1.55 μm double-fused vertical-cavity lasers , 1997 .

[46]  Cun-Zheng Ning,et al.  Modeling the interplay of thermal effects and transverse mode behavior in native-oxide-confined vertical-cavity surface-emitting lasers , 1998 .

[47]  Joachim Piprek,et al.  Material parameters of quaternary III - V semiconductors for multilayer mirrors at wavelength , 1996 .

[48]  Kent D. Choquette,et al.  Continuous wave operation of 640-660 nm selectively oxidised AlGaInP vertical-cavity lasers , 1995 .

[49]  Marek Osinski,et al.  Design of InGaN/GaN/AlGaN VCSELs using the effective frequency method , 1999, Photonics West.

[50]  J. David,et al.  Room temperature visible (683-713 nm) all-AlGaAs vertical-cavity surface-emitting lasers (VCSELs) , 1996, IEEE Photonics Technology Letters.

[51]  H. Sigg,et al.  The refractive index of AlxGa1−xAs below the band gap: Accurate determination and empirical modeling , 2000 .

[52]  M. Konagai,et al.  Acceptor energy level for Zn in Ga1−xAlxAs , 1980 .

[53]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[54]  Marek Osinski,et al.  Effects of carrier diffusion on thermal properties of proton-implanted top-surface-emitting lasers , 1995, Photonics West.

[55]  Jean-Louis Oudar,et al.  Thermal conductance of laterally-wet-oxidised GaAs/AlxOy Bragg reflectors , 2006 .

[56]  James S. Harris,et al.  GaInNAsSb/GaAs vertical cavity surface emitting lasers at 1534 nm , 2006 .

[57]  Thomas J. T. Kwan,et al.  Time-dependent numerical simulation of vertical cavity lasers , 1994, Photonics West - Lasers and Applications in Science and Engineering.

[58]  Numerical analysis of transverse mode in gain-guided vertical cavity surface emitting lasers , 1995 .

[59]  Marek Osinski,et al.  Thermal analysis of GaAs-AlGaAs etched-well surface-emitting double-heterostructure lasers with dielectric mirrors , 1993 .

[60]  Kenichi Iga,et al.  Modeling of oxide-confined vertical-cavity surface-emitting lasers , 1997 .

[61]  Y. Mori,et al.  An Anomaly in the Relation of Hall Coefficient to Resistivity in n-Type AlxGa1-xAs , 1981 .

[62]  K. Onozawa,et al.  High-power and high-temperature operation of Mg-doped AlGaInP-based red laser diodes , 2004, IEEE Journal of Quantum Electronics.

[63]  A. K. Dutta,et al.  Prospects of highly efficient AlGaInP based surface emitting type ring-LED for 50 and 156 Mb/s POF data link systems , 1998 .

[64]  Andrea Knigge,et al.  High-efficiency AlGaInP/AlGaAs vertical-cavity surface-emitting lasers with 650 nm wavelength , 2003 .

[65]  P. Blood,et al.  Minority carrier effects in GaInP laser diodes , 2000, IEEE Journal of Quantum Electronics.

[66]  S. Adachi GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications , 1985 .

[67]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .

[68]  H. Fujii,et al.  Low current and highly reliable operation at 80/spl deg/C of 650 nm 5 mW LDs for DVD applications , 1999 .

[69]  Robert P. Sarzała,et al.  Optimization of 1.3 µm GaAs-based oxide-confined (GaIn)(NAs) vertical-cavity surface-emitting lasers for low-threshold room-temperature operation , 2004 .

[70]  Kent D. Choquette,et al.  High efficiency AlGaInP-based 660-680 nm vertical-cavity surface emitting lasers , 1995 .

[71]  J. Teng,et al.  650-nm AlGaInP multiple-quantum-well lasers grown by metalorganic chemical vapor deposition using tertiarybutylphosphine , 2003 .

[72]  Roy Szweda VCSEL applications diversify as technology matures , 2006 .

[73]  E. F. Steigmeier,et al.  Electron and Phonon Scattering in GaAs at High Temperatures , 1965 .

[74]  A. Valster,et al.  Determination of the GaInP/AlGaInP band offset , 1990 .

[75]  Masaaki Yuri,et al.  Low operating current and high-temperature operation of 650-nm AlGaInP high-power laser diodes with real refractive index guided self-aligned structure , 1999 .

[76]  Motoharu Miyashita,et al.  High-power high-efficiency 660-nm laser diodes for DVD-R/RW , 2003 .

[77]  M. Weyers,et al.  650-nm vertical-cavity surface-emitting lasers: laser properties and reliability investigations , 2002, IEEE Photonics Technology Letters.

[78]  M. Ikeda,et al.  Selenium and zinc doping in Ga0.5In0.5P and (Al0.5Ga0.5)0.5In0.5P grown by metalorganic chemical vapor deposition , 1989 .

[79]  W. White,et al.  High-speed (11 Gbit/s) data transmission using perfluorinated graded-index polymer optical fibers for short interconnects (<100 m) , 2000, IEEE Photonics Technology Letters.

[80]  W. Nakwaski Hole Mobility in Carbon-Doped GaAs and (AlGa)As , 1992 .

[81]  P. Smowton,et al.  650 nm lasers with narrow far-field divergence , 1998, Conference Digest. ISLC 1998 NARA. 1998 IEEE 16th International Semiconductor Laser Conference (Cat. No. 98CH361130).

[82]  Kent D. Choquette,et al.  Comprehensive numerical modeling of vertical-cavity surface-emitting lasers , 1996 .