PneUI: pneumatically actuated soft composite materials for shape changing interfaces

This paper presents PneUI, an enabling technology to build shape-changing interfaces through pneumatically-actuated soft composite materials. The composite materials integrate the capabilities of both input sensing and active shape output. This is enabled by the composites' multi-layer structures with different mechanical or electrical properties. The shape changing states are computationally controllable through pneumatics and pre-defined structure. We explore the design space of PneUI through four applications: height changing tangible phicons, a shape changing mobile, a transformable tablet case and a shape shifting lamp.

[1]  Yong-Lae Park,et al.  Design and Fabrication of Soft Artificial Skin Using Embedded Microchannels and Liquid Conductors , 2012, IEEE Sensors Journal.

[2]  HolmanDavid,et al.  Organic user interfaces , 2008 .

[3]  Robert J. Wood,et al.  Soft curvature sensors for joint angle proprioception , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  Thomas C. Hull Project Origami: Activities for Exploring Mathematics , 2006 .

[5]  Sergio Pellegrino,et al.  The Folding of Triangulated Cylinders, Part I: Geometric Considerations , 1994 .

[6]  Majken Kirkegaard Rasmussen,et al.  Shape-changing interfaces: a review of the design space and open research questions , 2012, CHI.

[7]  Masahiko Inami,et al.  Animated paper: A toolkit for building moving toys , 2010, CIE.

[8]  Fabian Hemmert,et al.  Shape-changing mobiles: tapering in two-dimensional deformational displays in mobile phones , 2010, CHI Extended Abstracts.

[9]  Filip Ilievski,et al.  Multigait soft robot , 2011, Proceedings of the National Academy of Sciences.

[10]  Roel Vertegaal,et al.  MorePhone: a study of actuated shape deformations for flexible thin-film smartphone notifications , 2013, CHI.

[11]  Chris Harrison,et al.  Texture displays: a passive approach to tactile presentation , 2009, CHI.

[12]  Ivan Poupyrev,et al.  Sensing through structure: designing soft silicone sensors , 2010, TEI.

[13]  Jun Rekimoto,et al.  SmartSkin: an infrastructure for freehand manipulation on interactive surfaces , 2002, CHI.

[14]  Chris Harrison,et al.  Providing dynamically changeable physical buttons on a visual display , 2009, CHI.

[15]  Jamie Zigelbaum,et al.  Shape-changing interfaces , 2011, Personal and Ubiquitous Computing.

[16]  Paul Jackson,et al.  Folding Techniques for Designers: From Sheet to Form , 2011 .

[17]  S. Vogel,et al.  Life in Moving Fluids , 2020 .

[18]  Eiichi Yoshida,et al.  Hardware design of modular robotic system , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[19]  Heinrich M. Jaeger,et al.  Jamming as an enabling technology for soft robotics , 2010, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[20]  Robert J. Wood,et al.  Soft artificial skin with multi-modal sensing capability using embedded liquid conductors , 2011, 2011 IEEE SENSORS Proceedings.

[21]  H Tanaka,et al.  Programmable matter by folding , 2010, Proceedings of the National Academy of Sciences.

[22]  S. Vogel Life in Moving Fluids: The Physical Biology of Flow , 1981 .

[23]  Filip Ilievski,et al.  Soft robotics for chemists. , 2011, Angewandte Chemie.

[24]  G. Whitesides,et al.  Soft lithography for micro- and nanoscale patterning , 2010, Nature Protocols.

[25]  Roel Vertegaal,et al.  An inflatable hemispherical multi-touch display , 2010, TEI.

[26]  Hiroshi Ishii,et al.  Surflex: a programmable surface for the design of tangible interfaces , 2008, CHI Extended Abstracts.

[27]  Neil Gershenfeld,et al.  The Milli-Motein: A self-folding chain of programmable matter with a one centimeter module pitch , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[28]  Hiroshi Ishii,et al.  Direct and gestural interaction with relief: a 2.5D shape display , 2011, UIST '11.

[29]  Martin Frey,et al.  CabBoots: shoes with integrated guidance system , 2007, TEI.

[30]  Hiroshi Ishii,et al.  Radical atoms: beyond tangible bits, toward transformable materials , 2012, INTR.

[31]  Robert J. Wood,et al.  Wearable tactile keypad with stretchable artificial skin , 2011, 2011 IEEE International Conference on Robotics and Automation.

[32]  Tek-Jin Nam,et al.  Inflatable mouse: volume-adjustable mouse with air-pressure-sensitive input and haptic feedback , 2008, CHI.

[33]  Hiroshi Ishii,et al.  Jamming user interfaces: programmable particle stiffness and sensing for malleable and shape-changing devices , 2012, UIST.

[34]  Markus Löchtefeld,et al.  Morphees: toward high "shape resolution" in self-actuated flexible mobile devices , 2013, CHI.

[35]  Roberto Guerrieri,et al.  A textile based capacitive pressure sensor , 2002, Proceedings of IEEE Sensors.

[36]  Rebecca K. Kramer,et al.  Hyperelastic pressure sensing with a liquid-embedded elastomer , 2010 .

[37]  G. Whitesides,et al.  Elastomeric Origami: Programmable Paper‐Elastomer Composites as Pneumatic Actuators , 2012 .