Mathematical Modeling and Control of Multifractal Workloads for Data-Center-on-a-Chip Optimization

Building autonomous data-centers-on-chip (DCoC) for exascale computing requires mathematical frameworks that account and exploit the non-stationary and multi-fractal characteristics of computation and communication workloads. Towards this end, relying on DCoC (Intel's SCC) measurements, we propose a complex dynamical modeling approach that captures the observed multi-fractal characteristics of inter-event times between successive workload changes and the magnitude of the increments in DCoC workloads. Our novel mathematical framework allows for the analysis of higher order moments and enables the formulation of more accurate model predictive control strategies for multi-fractal dynamics. We investigate the impact of the multi-fractal spectrum richness on the performance of the control algorithm. Our mathematical formalism can further be used to model, analyze and solve DCoC design problems (e.g., topology reconfiguration, buffer sizing, mapping, scheduling, resource management, congestion control).

[1]  Margarita Rivero,et al.  CAPUTO LINEAR FRACTIONAL DIFFERENTIAL EQUATIONS , 2006 .

[2]  Radu Marculescu,et al.  A fractional calculus approach to modeling fractal dynamic games , 2011, IEEE Conference on Decision and Control and European Control Conference.

[3]  Jiankang Zhang,et al.  ON THE GENERALIZED BIRTH AND DEATH PROCESSES (II)––THE STAY TIME, LIMIT THEOREM AND ERGODIC PROPERTY , 1986 .

[4]  Kenneth Lloyd Rider A Simple Approximation to the Average Queue Size in the Time-Dependent M/M/1 Queue , 1976, JACM.

[5]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[6]  Radu Marculescu,et al.  An Analytical Approach for Network-on-Chip Performance Analysis , 2010, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[7]  Tadeusz Czachórski,et al.  Diffusion Approximation as a Modelling Tool , 2011, Network Performance Engineering.

[8]  Om P. Agrawal,et al.  Formulation of Euler–Lagrange equations for fractional variational problems , 2002 .

[9]  Ilkka Norros,et al.  On the Use of Fractional Brownian Motion in the Theory of Connectionless Networks , 1995, IEEE J. Sel. Areas Commun..

[10]  Mark A. McComb A Practical Guide to Heavy Tails , 2000, Technometrics.

[11]  William J. Dally,et al.  Route packets, not wires: on-chip inteconnection networks , 2001, DAC '01.

[12]  G. Rangarajan,et al.  Processes with Long-Range Correlations , 2003 .

[13]  Radu Marculescu,et al.  Dynamic power management for multidomain system-on-chip platforms , 2013, ACM Trans. Design Autom. Electr. Syst..

[14]  V. V. Ivanov,et al.  Kinetic model of network traffic , 2002 .

[15]  D. Kendall On the Generalized "Birth-and-Death" Process , 1948 .

[16]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[17]  Walter Willinger,et al.  Is Network Traffic Self-Similar or Multifractal? , 1997 .

[18]  Radu Marculescu,et al.  Statistical physics approaches for network-on-chip traffic characterization , 2009, CODES+ISSS '09.

[19]  Radu Marculescu,et al.  The Chip Is the Network: Toward a Science of Network-on-Chip Design , 2009, Found. Trends Electron. Des. Autom..

[20]  Xiaona Song,et al.  Dealing with fractional Dynamics of IP Network delays , 2012, Int. J. Bifurc. Chaos.

[21]  Radu Marculescu,et al.  Traffic analysis for on-chip networks design of multimedia applications , 2002, DAC '02.

[22]  Richard G. Baraniuk,et al.  A Multifractal Wavelet Model with Application to Network Traffic , 1999, IEEE Trans. Inf. Theory.

[23]  Walter Willinger,et al.  Self-Similar Network Traffic and Performance Evaluation , 2000 .

[24]  Milo M. K. Martin,et al.  Multifacet's general execution-driven multiprocessor simulator (GEMS) toolset , 2005, CARN.

[25]  Radu Marculescu,et al.  Non-Stationary Traffic Analysis and Its Implications on Multicore Platform Design , 2011, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[26]  Norman T. J. Bailey,et al.  A Continuous Time Treatment of a Simple Queue Using Generating Functions , 1954 .

[27]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[28]  Saurabh Dighe,et al.  A 48-Core IA-32 Processor in 45 nm CMOS Using On-Die Message-Passing and DVFS for Performance and Power Scaling , 2011, IEEE Journal of Solid-State Circuits.

[29]  Murad S. Taqqu,et al.  Theory and applications of long-range dependence , 2003 .

[30]  Axel Jantsch,et al.  Network on Chip : An architecture for billion transistor era , 2000 .

[31]  M. Riesz L'intégrale de Riemann-Liouville et le problème de Cauchy , 1949 .

[32]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[33]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[34]  Walter Willinger,et al.  On the Self-Similar Nature of Ethernet Traffic ( extended version ) , 1995 .

[35]  Mingzhou Ding,et al.  Processes with long-range correlations : theory and applications , 2003 .

[36]  Hisashi Kobayashi,et al.  Application of the Diffusion Approximation to Queueing Networks II: Nonequilibrium Distributions and Applications to Computer Modeling , 1974, JACM.

[37]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[38]  Hisashi Kobayashi,et al.  System Modeling and Analysis: Foundations of System Performance Evaluation , 2008 .

[39]  Charles Knessl,et al.  Exact and asymptotic solutions to a PDE that arises in time-dependent queues , 2000, Advances in Applied Probability.

[40]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .

[41]  Niraj K. Jha,et al.  GARNET: A detailed on-chip network model inside a full-system simulator , 2009, 2009 IEEE International Symposium on Performance Analysis of Systems and Software.

[42]  Walter Willinger,et al.  On the self-similar nature of Ethernet traffic , 1993, SIGCOMM '93.

[43]  Kai Li,et al.  The PARSEC benchmark suite: Characterization and architectural implications , 2008, 2008 International Conference on Parallel Architectures and Compilation Techniques (PACT).

[44]  M. R. C. McDowell,et al.  Kinetic Theory of Vehicular Traffic , 1972 .

[45]  Felix Pollaczek,et al.  Über das Warteproblem , 1934 .

[46]  H. Kober ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .

[47]  Antonio Di Crescenzo,et al.  Diffusion approximation to a queueing system with time-dependent arrival and service rates , 1995, Queueing Syst. Theory Appl..

[48]  Ward Whitt,et al.  The Physics of the Mt/G/∞ Queue , 1993, Oper. Res..

[49]  Luiz André Barroso,et al.  The Case for Energy-Proportional Computing , 2007, Computer.

[50]  Sally Floyd,et al.  Wide-area traffic: the failure of Poisson modeling , 1994 .

[51]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[52]  Patrice Abry,et al.  Scaling, Fractals and Wavelets , 2009 .

[53]  William Feller,et al.  On a Generalization of Marcel Riesz’ Potentials and the Semi-Groups generated by them , 2015 .

[54]  Paul Bogdan,et al.  A cyber-physical systems approach to personalized medicine: Challenges and opportunities for NoC-based multicore platforms , 2015, 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE).