INVARIANT MEASURES IN SIMPLE AND IN SMALL THEORIES

. We give examples of (i) a simple theory with a formula (with parameters) which does not fork over ∅ but has µ -measure 0 for every automorphism invariant Keisler measure µ , and (ii) a definable group G in a simple theory such that G is not definably amenable, i.e. there is no translation invariant Keisler measure on G . We also discuss paradoxical decompositions both in the setting of discrete groups and of definable groups, and prove some positive results about small theories, including the definable amenability of definable groups.

[1]  Keisler measures in the wild , 2021, 2103.09137.

[2]  Randolph B. Tarrier,et al.  Groups , 1973, Algebra.

[3]  A. Pillay,et al.  On first order amenability , 2020, 2004.08306.

[4]  A. Pillay DOMINATION AND REGULARITY , 2018, Bulletin of Symbolic Logic.

[5]  A. Chernikov MODEL THEORY, KEISLER MEASURES AND GROUPS , 2019 .

[6]  A group version of stable regularity , 2017, Mathematical Proceedings of the Cambridge Philosophical Society.

[7]  A. Chernikov,et al.  Definably amenable NIP groups , 2015, 1502.04365.

[8]  Anand Pillay,et al.  External definability and groups in NIP theories , 2013, J. Lond. Math. Soc..

[9]  Itay Kaplan,et al.  Forking and Dividing in NTP2 theories , 2012, The Journal of Symbolic Logic.

[10]  W. Marsden I and J , 2012 .

[11]  Enrique Casanovas,et al.  Simple Theories and Hyperimaginaries , 2011 .

[12]  Ehud Hrushovski,et al.  Generically stable and smooth measures in NIP theories , 2010, 1002.4763.

[13]  Ehud Hrushovski,et al.  Stable group theory and approximate subgroups , 2009, 0909.2190.

[14]  Ehud Hrushovski,et al.  On NIP and invariant measures , 2007, 0710.2330.

[15]  Ya'acov Peterzil,et al.  Groups, measures, and the NIP , 2006 .

[16]  L. Newelski,et al.  Coverings of Groups and Types , 2005 .

[17]  Jan Krajícek,et al.  Combinatorics with definable sets: Euler characteristics and Grothendieck rings , 2000, Bull. Symb. Log..

[18]  Anand Pillay,et al.  Generic Structures and Simple Theories , 1998, Ann. Pure Appl. Log..

[19]  Byunghan Kim Forking in Simple Unstable Theories , 1998 .

[20]  Anand Pillay,et al.  Simple Theories , 1997, Ann. Pure Appl. Log..

[21]  A. Pillay Geometric Stability Theory , 1996 .

[22]  A. Pillay,et al.  Definable subgroups of algebraic groups over finite fields. , 1995 .

[23]  Ehud Hrushovski,et al.  Groups definable in local fields and pseudo-finite fields , 1994 .

[24]  Ehud Hrushovski,et al.  Finite Structures with Few Types , 1993 .

[25]  William M. Kantor,et al.  ℵ0‐Categorical Structures Smoothly Approximated by Finite Substructures , 1989 .

[26]  H. Jerome Keisler Measures and forking , 1987, Ann. Pure Appl. Log..

[27]  Saharon Shelah,et al.  Simple unstable theories , 1980 .

[28]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .