Numerical relativity higher order gravitational waveforms of eccentric, spinning, non-precessing binary black hole mergers

We use the open source, community-driven, numerical relativity software, the Einstein Toolkit to study the physics of eccentric, spinning, non-precessing binary black hole mergers with mass-ratios q = { 2 , 4 , 6 } , individual dimensionless spin parameters s z 1 = ± 0 . 6, s z 2 = ± 0 . 3, that include higher order gravitational wave modes (cid:96) ≤ 4, except for memory modes. Assuming stellar mass binary black hole mergers that may be detectable by the advanced LIGO detectors, we find that including modes up to (cid:96) = 4 increases the signal-to-noise of compact binaries between 3 . 5% to 35%, compared to signals that only include the (cid:96) = | m | = 2 mode. We used the SEOBNRE waveform model, which incorporates spin and eccentricity corrections to the waveform dynamics, to quantify the impact of including higher order wave modes to constrain the individual spins and eccentricity of black hole mergers through fitting factor calculations. Our findings indicate that the inclusion of higher order wave modes has a measurable effect in the recovery of moderately and highly eccentric black hole mergers, and thus it is essential to develop waveform models and signal processing tools that accurately describe the physics of these astrophysical sources.

[1]  Marlin B. Schäfer,et al.  MLGWSC-1: The first Machine Learning Gravitational-Wave Search Mock Data Challenge , 2022, Physical Review D.

[2]  P. Lasky,et al.  Four Eccentric Mergers Increase the Evidence that LIGO–Virgo–KAGRA’s Binary Black Holes Form Dynamically , 2022, The Astrophysical Journal.

[3]  I. Bartos,et al.  AGN as potential factories for eccentric black hole mergers , 2020, Nature.

[4]  M. Szczepańczyk,et al.  Eccentricity estimate for black hole mergers with numerical relativity simulations , 2020, Nature Astronomy.

[5]  Gabrielle Allen,et al.  DataVault: a data storage infrastructure for the Einstein Toolkit , 2020, Classical and Quantum Gravity.

[6]  E. Huerta,et al.  Deep Learning with Quantized Neural Networks for Gravitational-wave Forecasting of Eccentric Compact Binary Coalescence , 2020, The Astrophysical Journal.

[7]  E. Huerta,et al.  Initial data and eccentricity reduction toolkit for binary black hole numerical relativity waveforms , 2020, Classical and Quantum Gravity.

[8]  C. Moore,et al.  Observation of eccentric binary black hole mergers with second and third generation gravitational wave detector networks , 2020, 2008.03313.

[9]  N. Evans Eccentric , 2020, Creative and Critical Projects in Classroom Music.

[10]  E. Huerta,et al.  Deep learning for gravitational wave forecasting of neutron star mergers , 2020, 2010.09751.

[11]  P. Lasky,et al.  GW190521: Orbital Eccentricity and Signatures of Dynamical Formation in a Binary Black Hole Merger Signal , 2020, The Astrophysical Journal.

[12]  P. K. Panda,et al.  GW190521: A Binary Black Hole Merger with a Total Mass of 150  M_{⊙}. , 2020, Physical review letters.

[13]  Y.Fujii,et al.  Overview of KAGRA: Detector design and construction history , 2020, Progress of Theoretical and Experimental Physics.

[14]  Duncan A. Brown,et al.  Search for Eccentric Binary Neutron Star Mergers in the First and Second Observing Runs of Advanced LIGO , 2019, The Astrophysical Journal.

[15]  Zhoujian Cao,et al.  Validating the effective-one-body numerical-relativity waveform models for spin-aligned binary black holes along eccentric orbits , 2019, Physical Review D.

[16]  M. Colleoni,et al.  First survey of spinning eccentric black hole mergers: Numerical relativity simulations, hybrid waveforms, and parameter estimation , 2019, Physical Review D.

[17]  P. Lasky,et al.  Searching for eccentricity: signatures of dynamical formation in the first gravitational-wave transient catalogue of LIGO and Virgo , 2019, Monthly Notices of the Royal Astronomical Society.

[18]  P. K. Panda,et al.  Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs , 2019, The Astrophysical Journal.

[19]  Sarah Habib,et al.  Characterization of numerical relativity waveforms of eccentric binary black hole mergers , 2019, Physical Review D.

[20]  Cody Messick,et al.  The GstLAL Search Analysis Methods for Compact Binary Mergers in Advanced LIGO's Second and Advanced Virgo's First Observing Runs , 2019, 1901.08580.

[21]  E. A. Huerta,et al.  The Physics of Eccentric Binary Black Hole Mergers. A Numerical Relativity Perspective , 2019, Physical Review D.

[22]  Scott E. Field,et al.  Surrogate model of hybridized numerical relativity binary black hole waveforms , 2018, Physical Review D.

[23]  Enrico Ramirez-Ruiz,et al.  Eccentric Black Hole Mergers in Dense Star Clusters: The Role of Binary–Binary Encounters , 2018, The Astrophysical Journal.

[24]  Bence Kocsis,et al.  Measurement Accuracy of Inspiraling Eccentric Neutron Star and Black Hole Binaries Using Gravitational Waves , 2018, The Astrophysical Journal.

[25]  E. Huerta,et al.  Fusing numerical relativity and deep learning to detect higher-order multipole waveforms from eccentric binary black hole mergers , 2018, Physical Review D.

[26]  Michael Zevin,et al.  Post-Newtonian dynamics in dense star clusters: Formation, masses, and merger rates of highly-eccentric black hole binaries , 2018, Physical Review D.

[27]  T. Robson,et al.  Towards a Fourier domain waveform for non-spinning binaries with arbitrary eccentricity , 2018, Classical and Quantum Gravity.

[28]  P. Lasky,et al.  Measuring eccentricity in binary black hole inspirals with gravitational waves , 2018, Physical Review D.

[29]  Harald P. Pfeiffer,et al.  Eccentric binary black hole inspiral-merger-ringdown gravitational waveform model from numerical relativity and post-Newtonian theory , 2017, Physical Review D.

[30]  Johan Samsing,et al.  Eccentric Black Hole Mergers Forming in Globular Clusters , 2017, 1711.07452.

[31]  E. A. Huerta,et al.  Python Open source Waveform ExtractoR (POWER): an open source, Python package to monitor and post-process numerical relativity simulations , 2017, ArXiv.

[32]  Wen-Biao Han,et al.  Waveform model for an eccentric binary black hole based on the effective-one-body-numerical-relativity formalism , 2017, 1708.00166.

[33]  Tanja Hinderer,et al.  Foundations of an effective-one-body model for coalescing binaries on eccentric orbits , 2017, 1707.08426.

[34]  Bence Kocsis,et al.  Black Hole Mergers in Galactic Nuclei Induced by the Eccentric Kozai–Lidov Effect , 2017, 1706.09896.

[35]  Donato Bini,et al.  Spin-orbit precession along eccentric orbits for extreme mass ratio black hole binaries and its effective-one-body transcription , 2017 .

[36]  Bence Kocsis,et al.  Accuracy of Estimating Highly Eccentric Binary Black Hole Parameters with Gravitational-wave Detections , 2017, 1705.10781.

[37]  Enrico Ramirez-Ruiz,et al.  On the Assembly Rate of Highly Eccentric Binary Black Hole Mergers , 2017, 1703.09703.

[38]  N. Yunes,et al.  Eccentric gravitational wave bursts in the post-Newtonian formalism , 2017, 1702.01818.

[39]  Lawrence E. Kidder,et al.  Complete waveform model for compact binaries on eccentric orbits , 2016, 1609.05933.

[40]  N. Yunes,et al.  Hereditary effects in eccentric compact binary inspirals to third post-Newtonian order , 2016, 1607.05409.

[41]  B. A. Boom,et al.  Binary Black Hole Mergers in the First Advanced LIGO Observing Run , 2016, 1606.04856.

[42]  C. Mishra,et al.  Gravitational-wave phasing for low-eccentricity inspiralling compact binaries to 3PN order , 2016, 1605.00304.

[43]  Donato Bini,et al.  High post-Newtonian order gravitational self-force analytical results for eccentric equatorial orbits around a Kerr black hole , 2016 .

[44]  A. Gopakumar,et al.  Frequency and time domain inspiral templates for comparable mass compact binaries in eccentric orbits , 2016, 1602.03081.

[45]  Marco Drago,et al.  Proposed search for the detection of gravitational waves from eccentric binary black holes , 2015, 1511.09240.

[46]  G. Mitselmakher,et al.  Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors , 2015, 1511.05999.

[47]  C. Evans,et al.  Highly eccentric inspirals into a black hole , 2015, 1511.01498.

[48]  Matthew West,et al.  The PyCBC search for gravitational waves from compact binary coalescence , 2015, 1508.02357.

[49]  P. Meyers,et al.  Detectability of eccentric compact binary coalescences with advanced gravitational-wave detectors , 2014, 1412.4665.

[50]  S. Klimenko,et al.  Advanced LIGO , 2014, 1411.4547.

[51]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[52]  Richard O'Shaughnessy,et al.  Accurate and efficient waveforms for compact binaries on eccentric orbits , 2014, 1408.3406.

[53]  John M. Fonner,et al.  Launcher: A Shell-based Framework for Rapid Development of Parallel Parametric Studies , 2014, XSEDE '14.

[54]  Kai Sheng Tai,et al.  Detecting gravitational waves from highly eccentric compact binaries , 2014, 1403.7754.

[55]  E. A. Huerta,et al.  Effect of eccentricity on binary neutron star searches in advanced LIGO , 2013, 1301.1895.

[56]  Duncan A. Brown,et al.  Template banks to search for low-mass binary black holes in advanced gravitational-wave detectors , 2012, 1211.6184.

[57]  C. Will Capture of non-relativistic particles in eccentric orbits by a Kerr black hole , 2012, 1208.3931.

[58]  C. Ott,et al.  The Einstein Toolkit: a community computational infrastructure for relativistic astrophysics , 2011, 1111.3344.

[59]  S. McWilliams,et al.  Inspiral of generic black hole binaries: spin, precession and eccentricity , 2010, 1009.2533.

[60]  K. Arun,et al.  Post-circular expansion of eccentric binary inspirals: Fourier-domain waveforms in the stationary phase approximation , 2009, 0906.0313.

[61]  G.Mitselmakher,et al.  Coherent method for detection of gravitational wave bursts , 2008, 0802.3232.

[62]  Frank Herrmann,et al.  Circularization and final spin in eccentric binary-black-hole inspirals , 2007, 0710.5167.

[63]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[64]  G. Mitselmakher,et al.  A coherent method for detection of gravitational wave bursts , 2004 .