Modeling Ruthenium-Dye-Sensitized TiO2 Surfaces Exposing the (001) or (101) Faces: A First-Principles Investigation

We present a first-principles computational investigation on the adsorption mode and electronic structure of the highly efficient heteroleptic ruthenium dye C101, [NaRu(4,4′-bis(5-hexylthiophene-2-yl)-2,2′-bipyridine)(4-carboxylic acid-4′-carboxylate-2,2′-bipyridine)(NCS)2], on anatase TiO2 models exposing the (001) and (101) surfaces. The electronic structure of the TiO2 models shows a conduction band energy upshift for the (001)-surface ranging between ∼50 and ∼110 meV compared with the (101) surface, in agreement with previous interfacial impedance and recent spectro-electrochemical data. TDDFT excited-state calculations provided the same optical band gap, within 0.01 eV, for the (001)- and (101) models. Two dominant adsorption modes for C101 dye adsorption on the (001) and (101) surfaces were found, which differ by the binding of the dye carboxylic groups to the TiO2 surfaces (bridged bidentate vs monodentate), leading to sizably different tilting of the anchoring bipyridine plane with respect to the ...

[1]  P. Liska,et al.  Acid-Base Equilibria of (2,2'-Bipyridyl-4,4'-dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania. , 1999, Inorganic chemistry.

[2]  Michael Grätzel,et al.  Recent advances in sensitized mesoscopic solar cells. , 2009, Accounts of chemical research.

[3]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[4]  S. H. Elder,et al.  Lithium insertion into zirconia-stabilized mesoscopic TiO2 (anatase) , 2000 .

[5]  Peng Wang,et al.  High-efficiency organic dye-sensitized mesoscopic solar cells with a copper redox shuttle. , 2011, Chemical communications.

[6]  Y. Sakka,et al.  Orientation Dependence of Semiconductor Properties in Anatase TiO2 Polycrystalline Aggregates , 2010 .

[7]  L. Kavan Electrochemistry of titanium dioxide: some aspects and highlights. , 2012, Chemical record.

[8]  Valery Shklover,et al.  Structure of Organic/Inorganic Interface in Assembled Materials Comprising Molecular Components. Crystal Structure of the Sensitizer Bis[(4,4‘-carboxy-2,2‘-bipyridine)(thiocyanato)]ruthenium(II) , 1998 .

[9]  Jin Zou,et al.  Anatase TiO2 single crystals with a large percentage of reactive facets , 2008, Nature.

[10]  Hitoshi Kusama,et al.  TiO2 band shift by nitrogen-containing heterocycles in dye-sensitized solar cells: a periodic density functional theory study. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[11]  R. D. Wright,et al.  Chemical modification of a titanium (IV) oxide electrode to give stable dye sensitisation without a supersensitiser , 1979, Nature.

[12]  J. Moser,et al.  A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials , 2012, Nature Communications.

[13]  J. Kaiser Clinical research. Gene therapists celebrate a decade of progress. , 2011, Science.

[14]  Peng Wang,et al.  High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte. , 2002, Chemical communications.

[15]  Yuan Wang,et al.  Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. , 2008, Journal of the American Chemical Society.

[16]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[17]  Giovanni Scalmani,et al.  Energies, structures, and electronic properties of molecules in solution with the C‐PCM solvation model , 2003, J. Comput. Chem..

[18]  F. Angelis,et al.  A computational approach to the electronic and optical properties of Ru(II) and Ir(III) polypyridyl complexes: Applications to DSC, OLED and NLO , 2011 .

[19]  G. Boschloo,et al.  Design of organic dyes and cobalt polypyridine redox mediators for high-efficiency dye-sensitized solar cells. , 2010, Journal of the American Chemical Society.

[20]  Jiaguo Yu,et al.  Anatase TiO(2) nanosheets with exposed (001) facets: improved photoelectric conversion efficiency in dye-sensitized solar cells. , 2010, Nanoscale.

[21]  Ivano Tavernelli,et al.  New paradigm in molecular engineering of sensitizers for solar cell applications. , 2009, Journal of the American Chemical Society.

[22]  Sean C. Smith,et al.  Nanosized anatase TiO2 single crystals for enhanced photocatalytic activity. , 2010, Chemical communications.

[23]  Michael Grätzel,et al.  Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency , 2011, Science.

[24]  Guido Viscardi,et al.  Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. , 2005, Journal of the American Chemical Society.

[25]  Leone Spiccia,et al.  High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes. , 2011, Nature chemistry.

[26]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[27]  Nicholas J Long,et al.  Molecular control of recombination dynamics in dye-sensitized nanocrystalline TiO2 films: free energy vs distance dependence. , 2004, Journal of the American Chemical Society.

[28]  Ladislav Kavan,et al.  ELECTROCHEMICAL AND PHOTOELECTROCHEMICAL INVESTIGATION OF SINGLE-CRYSTAL ANATASE , 1996 .

[29]  L. Kavan,et al.  Highly efficient sensitization of titanium dioxide , 1985 .

[30]  Filippo De Angelis,et al.  Computational modelling of TiO2 surfaces sensitized by organic dyes with different anchoring groups: adsorption modes, electronic structure and implication for electron injection/recombination. , 2012, Physical chemistry chemical physics : PCCP.

[31]  P. Liska,et al.  Engineering of efficient panchromatic sensitizers for nanocrystalline TiO(2)-based solar cells. , 2001, Journal of the American Chemical Society.

[32]  Vincenzo Barone,et al.  Time-dependent density functional theory for molecules in liquid solutions , 2001 .

[33]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[34]  Yali Wang,et al.  A facile synthesis of anatase TiO2 nanosheets-based hierarchical spheres with over 90% {001} facets for dye-sensitized solar cells. , 2011, Chemical communications.

[35]  Jian Pan,et al.  On the true photoreactivity order of {001}, {010}, and {101} facets of anatase TiO2 crystals. , 2011, Angewandte Chemie.

[36]  Paolo G Bomben,et al.  Cyclometalated Ru complexes of type [Ru(II)(N--N)(2)(C--N)](z): physicochemical response to substituents installed on the anionic ligand. , 2010, Inorganic chemistry.

[37]  Alessandro Troisi,et al.  Evaluating Charge Recombination Rate in Dye-Sensitized Solar Cells from Electronic Structure Calculations , 2012 .

[38]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[39]  L. Kavan,et al.  Orientation Dependence of Charge‐Transfer Processes on TiO2 (Anatase) Single Crystals , 2000 .

[40]  Annabella Selloni,et al.  First-Principles Modeling of the Adsorption Geometry and Electronic Structure of Ru(II) Dyes on Extended TiO2 Substrates for Dye-Sensitized Solar Cell Applications , 2010 .

[41]  Michael Grätzel,et al.  Solar energy conversion by dye-sensitized photovoltaic cells. , 2005, Inorganic chemistry.

[42]  Qing Wang,et al.  Cobalt Redox Mediators for Ruthenium-Based Dye-Sensitized Solar Cells: A Combined Impedance Spectroscopy and Near-IR Transmittance Study , 2011 .

[43]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[44]  Lianzhou Wang,et al.  Nanosized Anatase TiO2 Single Crystals with Tunable Exposed (001) Facets for Enhanced Energy Conversion Efficiency of Dye‐Sensitized Solar Cells , 2011 .

[45]  L. Kavan,et al.  Polycrystalline TiO2 Anatase with a Large Proportion of Crystal Facets (001): Lithium Insertion Electrochemistry , 2010 .

[46]  Petter Persson,et al.  Quantum Chemical Study of Photoinjection Processes in Dye-Sensitized TiO2 Nanoparticles , 2000 .

[47]  A. Feldhoff,et al.  Adsorption of oxalate on anatase (100) and rutile (110) surfaces in aqueous systems: experimental results vs. theoretical predictions. , 2009, Physical chemistry chemical physics : PCCP.

[48]  Kuo-Chuan Ho,et al.  A ruthenium complex with superhigh light-harvesting capacity for dye-sensitized solar cells. , 2006, Angewandte Chemie.

[49]  H. Gerischer Über den Ablauf von Redoxreaktionen an Metallen und an Halbleitern , 1960 .

[50]  Mohammad Khaja Nazeeruddin,et al.  Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes , 1993 .

[51]  Anders Hagfeldt,et al.  Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. , 2009, Accounts of chemical research.

[52]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[53]  N. Zheng,et al.  Nonaqueous production of nanostructured anatase with high-energy facets. , 2008, Journal of the American Chemical Society.

[54]  Mohammad Khaja Nazeeruddin,et al.  Absorption Spectra and Excited State Energy Levels of the N719 Dye on TiO2 in Dye-Sensitized Solar Cell Models , 2011 .

[55]  Zhaoxiong Xie,et al.  Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. , 2009, Journal of the American Chemical Society.

[56]  L. Kavan,et al.  Lithium insertion into self-organized mesoscopic TiO2 (anatase) electrodes , 2000 .

[57]  L. Kavan,et al.  Voltage enhancement in dye-sensitized solar cell using (001)-oriented anatase TiO2 nanosheets , 2012, Journal of Solid State Electrochemistry.